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Abstract

Learning rates for least-squares regression are typically expressed in terms of L2-norms. In this

paper we extend these rates to norms stronger than the L2-norm without requiring the regression

function to be contained in the hypothesis space. In the special case of Sobolev reproducing kernel

Hilbert spaces used as hypotheses spaces, these stronger norms coincide with fractional Sobolev

norms between the used Sobolev space and L2. As a consequence, not only the target function but

also some of its derivatives can be estimated without changing the algorithm. From a technical

point of view, we combine the well-known integral operator techniques with an embedding property,

which so far has only been used in combination with empirical process arguments. This combination

results in new finite sample bounds with respect to the stronger norms. From these finite sample

bounds our rates easily follow. Finally, we prove the asymptotic optimality of our results in many

cases.

Keywords Statistical Learning Theory, Regularized Kernel Methods, Least-Squares Regression, In-

terpolation Norms, Uniform Convergence, Learning Rates

1. Introduction

Given a datasetD = {(xi, yi)}ni=1 independently sampled from an unknown distribution P onX×R, the

goal of non-parametric least-squares regression is to estimate the conditional mean function f∗
P : X → R

given by f∗
P (x) := E(Y |X = x). The function f∗

P is also known as regression function, we refer to [15] for

basic information as well as various algorithms for this problem. In this work, we focus on regularized

least-squares algorithms, which are also known as least-squares support vector machines (LS-SVM),

see e.g. [31]. Recall that LS-SVMs construct a predictor fD,λ by solving the convex optimization

problem

fD,λ = argmin
f∈H

{

λ‖f‖2H +
1

n

n
∑

i=1

(yi − f(xi))
2
}

, (1)
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where a reproducing kernel Hilbert space (RKHS) H over X is used as hypothesis spaces and λ > 0

is the so called regularization parameter. For a definition and basic properties of RKHSs see e.g. [31,

Chapter 4]. Probably the most interesting theoretical challenge for this problem is to establish learning

rates, either in expectation or in probability, for the generalization error

‖fD,λ − f∗
P‖ . (2)

Here, we investigate (2) with respect to the norms of a continuous scale of suitable Hilbert spaces

H ⊆ [H]γ ⊆ L2. In the following we assume that [H]0 = L2 and [H]1 = H, see Section 2 for an exact

definition. Moreover, in this paper we are mainly interested in the hard learning scenario f∗
P 6∈ H.

Let us briefly compare the two main techniques previously used in the literature to establish learning

rates for (2): the integral operator technique, see e.g. [6, 7, 8, 2, 30, 4, 3, 9, 18, 16] and references therein,

and the empirical process technique, see e.g. [19, 31, 33] and references therein. An advantage of the

integral operator technique is, that it can provide learning rates for (2) with respect to a continuous

scale of γ, including the L2-norm case γ = 0, see e.g. [3, 18]. In addition, it can be used to establish

learning rates for spectral regularization algorithms, see e.g. [2, 3, 18] and further RKHS-based learning

algorithms, see e.g. [21, 17, 25, 22, 23]. On the other hand, the empirical process techniques can so far

only handle the L2-norm in (2), but in the hard learning scenario f∗
P 6∈ H, which is rarely investigated

by the integral operator technique, it provides the fastest, and in many cases minimax optimal, L2-

learning rates for (2), see [33]. In addition, it can be easily applied to learning algorithms (1) in which

the least-squares loss function is replaced by other convex loss functions, see e.g. [13] for expectile

regression and e.g. [11] for quantile regression.

In the present manuscript, which is an improvement of its first version [14], we extend and improve

the results of [3, 18]. To be more precise, we extend the results of [3], which assume f∗
P ∈ H, to the

hard learning case and the largest possible scale of γ, and compared to [18] we obtain faster rates of

convergence for (2), if the RKHS enjoys a certain embedding property, which previously has only been

used in [33, 9, 25]. In the hard learning scenario, we obtain, as a byproduct, the L2-learning rates

of [33], as well as the very first L∞-norm learning rates. For a more detailed comparison with the

literature see Section 5 and in particular Table 1 and Figure 1. Finally, we also prove the minimax

optimality of our [H]γ-norm learning rates for all combinations of H and P for which the optimal

L2-norm learning rates are known.

The rest of this work is organized as follows: We start in Section 2 with an introduction of notations

and general assumptions. In Section 3 we present our learning rates and discuss their main assumptions.

The consequences of our results for the special case of a Sobolev/Besov RKHS H and a marginal

distribution PX close to the uniform distribution can be found in Section 4. Note that in this case

[H]γ coincide with the classical Besov spaces and the corresponding norms have a nice interpretation

in terms of derivatives. Finally, we compare our result with other contributions in Section 5. All proofs

can be found in Section 6.

Acknowledgment

We are especially grateful to Nicole Mücke for pointing us to the article of Lin, Rudi, Rosasco, and

Cevher [18].
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2. Preliminaries

Let (X,B) be a measurable space used as input space, Y = R be the output space and P be an

unknown probability distribution on X ×Y with |P |22 :=
∫

X×Y y2 dP (x, y) < ∞. Moreover, we denote

the marginal distribution of P on X by ν := PX and assume that (X,B) is ν-complete. In the following,

we fix a (regular) conditional probability P ( · |x) of P given x ∈ X. Since the conditional mean function

f∗
P is only ν-almost everywhere uniquely determined we use the symbol f∗

P for both, the ν-equivalence

class and for the representative

f∗
P (x) =

∫

Y
y P (dy|x) .

If we use another representative we will explicitly point this out.

In the following, we fix a separable RKHS H on X with respect to a measurable (w.r.t. B ⊗ B)
and bounded kernel k. Let us recall some facts about the interplay between H and L2(ν). Some of

the following facts can already be found in Smale and Zhou [28, 29] and De Vito et al. [8, 7], but

we follow the more recent contribution [32]. According to [32, Lemma 2.2, Lemma 2.3], and [31,

Theorem 4.27] the—not necessarily injective—embedding Iν : H → L2(ν), mapping a function f ∈ H

to its ν-equivalence class [f ]ν , is well-defined, Hilbert-Schmidt and the Hilbert-Schmidt norm satisfies

‖Iν‖L2(H,L2(ν)) = ‖k‖L2(ν) :=

(
∫

X
k(x, x) dν(x)

)1/2

< ∞ .

Moreover, the adjoint operator Sν := I∗ν : L2(ν) → H is an integral operator with respect to the kernel

k, i.e.

(Sνf)(x) =

∫

X
k(x, x′)f(x′) dν(x′)

for x ∈ X and f ∈ L2(ν). Next, we define the self-adjoint and positive semi-definite integral operators

Tν := IνSν : L2(ν) → L2(ν) and Cν := SνIν : H → H .

These operators are trace class and the trace norm satisfies

‖Tν‖L1(L2(ν)) = ‖Cν‖L1(H) = ‖Iν‖2L2(H,L2(ν))
= ‖Sν‖2L2(L2(ν),H) . (3)

If there is no danger of confusion we write ‖·‖ for the operator norm, ‖·‖2 for the Hilbert-Schmidt norm,

and ‖·‖1 for the trace norm. The spectral theorem for self-adjoint compact operators yields an at most

countable index set I, a non-increasing summable sequence (µi)i∈I ⊆ (0,∞), and a family (ei)i∈I ⊆ H,

such that ([ei]ν)i∈I is an ONB of ran Iν ⊆ L2(ν) and (µ
1/2
i ei)i∈I is an ONB of (ker Iν)

⊥ ⊆ H with

Tν =
∑

i∈I
µi 〈 · , [ei]ν〉L2(ν)[ei]ν resp. Cν =

∑

i∈I
µi 〈 · , µ1/2

i ei〉H µ
1/2
i ei , (4)

see [32, Lemma 2.12] for details. Since we are mainly interested in the hard learning scenario f∗
P 6∈ H

we exclude finite index sets I and assume I = N in the following.

Let us recall some intermediate spaces introduced on [32, p. 384]. We call them power spaces. For
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α ≥ 0 the α-power space is defined by

[H]αν :=

{

∑

i≥1

aiµ
α/2
i [ei]ν : (ai)i≥1 ∈ ℓ2(N)

}

⊆ L2(ν)

and equipped with the α-power norm

∥

∥

∥

∥

∑

i≥1

aiµ
α/2
i [ei]ν

∥

∥

∥

∥

[H]αν

:=
∥

∥(ai)i≥1

∥

∥

ℓ2(N)
=

(

∑

i≥1

a2i

)1/2

for (ai)i≥1 ∈ ℓ2(N). If there is no danger of confusion we use the abbreviation ‖ · ‖α := ‖ · ‖[H]αν
.

Moreover, in the case of α = 1 we introduce the notation [H]ν := [H]1ν . The space [H]αν is a separable

Hilbert space with ONB (µ
α/2
i [ei]ν)i≥1. Recall, that for α = 0 we have [H]0ν = ran Iν ⊆ L2(ν) with

‖ · ‖0 = ‖ · ‖L2(ν). Moreover, for α = 1 we have [H]1ν = ran Iν and [H]1ν is isometric isomorph to

the closed subspace (ker Iν)
⊥ of H via Iν , i.e. ‖[f ]ν‖1 = ‖f‖H for f ∈ (ker Iν)

⊥. For 0 < β < α the

embeddings

[H]αν →֒ [H]βν →֒ [H]0ν = ran Iν ⊆ L2(ν) (5)

exist and are compact. For α > 0 the α-power space is given by the image of the fractional integral

operator, namely

[H]αν = ranTα/2
ν and ‖Tα/2

ν f‖α = ‖f‖L2(ν)

for f ∈ ran Iν . In addition, for 0 < α < 1 the α-power space is characterized in terms of interpola-

tion spaces of the real method, see e.g. [34, Section 1.3.2] for a definition. To be more precise, [32,

Theorem 4.6] yields

[H]αν
∼=

[

L2(ν), [H]ν
]

α,2
, (6)

where the symbol ∼= in (6) means that these spaces are isomorph, i.e. the sets coincide and the corre-

sponding norms are equivalent. Note that for Sobolev/Besov RKHS and marginal distributions close

to the uniform distribution, the interpolation space
[

L2(ν), [H]ν
]

α,2
is well-known from the literature,

see Section 4 for details.

3. Main Results

Before we state the results we introduce the main assumptions. For 0 < p ≤ 1 we assume that the

eigenvalue decay satisfy a polynomial upper bound of order 1/p: There is a constant C > 0 such that

the eigenvalues (µi)i≥1 of the integral operator satisfy

µi ≤ C i−1/p (EVD)

for all i ≥ 1. In order to establish the optimality of our results we obviously need to assume an exact

polynomial asymptotic behavior of order 1/p: There are constants c, C > 0 such that

c i−1/p ≤ µi ≤ C i−1/p (EVD+)

4



is satisfied for all i ≥ 1. Our next assumption is the embedding property, for 0 < α ≤ 1: There is a

constant A > 0 with
∥

∥[H]αν →֒ L∞(ν)
∥

∥ ≤ A . (EMB)

This mean [H]αν is continuously embedded into L∞(ν) and the operator norm of the embedding is

bounded by A. Because of (5) the lager α is the weaker the embedding property is. Since our kernel

k is bounded (EMB) is always satisfied for α = 1. Moreover, Lemma 6.2 (iii) in the proof section

shows that (EMB) implies a polynomial eigenvalue decay of order 1/α. But the inverse does not hold

in general and hence we assume p ≤ α in the following.

Note that the Conditions (EMB) and (EVD)/(EVD+) just describe the interplay between the

marginal distribution ν = PX and the RKHS H. Conseqently, they are independent of the condi-

tional distribution P (·|x) and especially independent of the regression function f∗
P . In the following,

we use a source condition, for 0 < β ≤ 2, to measure the smoothness of the regression function:

f∗
P ∈ [H]βν and there is a constant B > 0 with

‖f∗
P ‖β ≤ B . (SRC)

Note that |P |2 < ∞ already implies f∗
P ∈ L2(ν). Moreover, (SRC) with β ≥ 1 implies that f∗

P has a

representative from H—in short f∗
P ∈ H—and hence β ≥ 1 excludes the hard learning scenario we are

mainly interested in. We included the case 1 ≤ β ≤ 2 because it is no extra effort in the proof. Since

the generalization error ‖[fD,λ]ν − f∗
P‖γ , with respect to the γ-power norm, for some 0 ≤ γ ≤ 1, is

well-defined if and only if f∗
P ∈ [H]γν we naturally have to assume β ≥ γ in the following. Finally, we

introduce a moment condition to control the noise of the observations: There are constants σ,L > 0

such that
∫

Y
|y − f∗

P (x)|m P (dy|x) ≤ 1

2
m!σ2 Lm−2 (MOM)

is satisfied for ν-a.a. x ∈ X and all m ≥ 2. Note that (MOM) is satisfied for Gaussian noise with

bounded variance, i.e. P ( · |x) = N (f∗
P (x), σ

2
x), where x 7→ σx ∈ (0,∞) is a measurable and ν-a.s.

bounded function. Another sufficient condition is that P is concentrated on X × [−M,M ] for some

constant M > 0, i.e. P (X × [−M,M ]) = 1. The Conditions (EVD) and (SRC) are well-recognised in

the statistical analysis of regularized least-squares algorithms, see e.g. [4, 3, 16, 18]. However, there is

a whole zoo of moment conditions. We use (MOM) because (MOM) only constraints the discrepancy

of the observation y to the true value f∗
P (x) and hence do not imply additional constraints, such

as boundedness, on f∗
P . An embedding property similar to (EMB) was used in [33] in combination

with empirical process arguments, in [9] to investigate benign scenarios with exponentially decreasing

eigenvalues and f∗
P ∈ H, and in [25] to investigate stochastic gradient methods. But embedding

properties are new in combination with the integral operator technique in the hard learning scenario

for the learning scheme (1) and enables us to prove the following result.

3.1 Theorem (γ-Learning Rates) Let H be a separable RKHS on X with respect to a bounded and

measurable kernel k and P be a probability distribution on X × Y such that |P |2 < ∞ and (X,B) is

complete with respect to the marginal distribution ν := PX . Furthermore, we assume that there is a

constant B∞ > 0 with ‖f∗
P ‖L∞(ν) ≤ B∞ and that the Conditions (EMB), (EVD) (SRC), and (MOM)

are satisfied for some 0 < p ≤ α ≤ 1 and 0 < β ≤ 2. Then for 0 ≤ γ ≤ 1 with γ < β and a

5



regularization parameter sequence (λn)n≥1 the LS-SVM D 7→ fD,λn with respect to H defined by (1)

satisfies the following statements:

(i) In the case of β + p ≤ α and λn ≍
( logr(n)

n

)1/α
for some r > 1 there is a constant K > 0

independent of n ≥ 1 and τ ≥ 1 such that

∥

∥[fD,λn ]ν − f∗
P

∥

∥

2

γ
≤ τ2K

( logr(n)

n

)
β−γ
α

(7)

is satisfied for sufficient large n ≥ 1 with Pn-probability ≥ 1− 4e−τ .

(ii) In the case of β + p > α and λn ≍
(

1
n

)
1

β+p there is a constant K > 0 independent of n ≥ 1 and

τ ≥ 1 such that
∥

∥[fD,λn ]ν − f∗
P

∥

∥

2

γ
≤ τ2K

( 1

n

)
β−γ
β+p

(8)

is satisfied for sufficient large n ≥ 1 with Pn-probability ≥ 1− 4e−τ .

Theorem 3.1 is mainly based on a finite sample bound given in the proof section, see Theorem 6.7.

The asymptotic behavior in n of the right hand side in (7) respectively (8) is called learning rate with

respect to the γ-power norm or abbreviated γ-learning rate. Note that, for β ≥ α, the conditional

mean function f∗
P is automatically ν-a.s. bounded, since we have f∗

P ∈ [H]βν →֒ [H]αν →֒ L∞(ν), and in

this case always situation (8) applies. Moreover, in the case of α = p, which was also considered in [33,

Corollary 6], we are always in situation (8), too. Recall, for γ = 0 the left hand side coincides with the

L2(ν)-norm. If we ignore the log-term in the obtained γ-learning rates then in both cases, β + p ≤ α

and β + p > α, the γ-learning rate coincides with

( 1

n

)
β−γ

max{β+p,α}
.

Finally, note that the asymptotic behavior of the regularization parameter sequence does not depend

on the considered γ-power norm. Consequently, we get convergence with respect to all γ-power norms

0 ≤ γ < β simultaneously. In order to investigate the optimality of our γ-learning rates the next

theorem yields γ-lower rates. In doing so, we obviously have to assume (EVD+) to make sure that

the eigenvalues do not decay faster than (EVD) guarantees.

3.2 Theorem (γ-Lower Rates) Let H be a separable RKHS on X with respect to a bounded and

measurable kernel k, and ν be a probability distribution on X such that (EMB) and (EVD+) are

satisfied for some 0 < p ≤ α ≤ 1. Then, for all parameters 0 < β ≤ 2, 0 ≤ γ ≤ 1 with γ < β and

all constants σ,L,B,B∞ > 0 there exist K,C, r > 0 such that for all learning methods D 7→ fD, all

τ > 0, and all n ≥ 1 sufficiently large there is a distribution P on X × Y with PX = ν satisfying

‖f∗
P ‖2L∞(ν) ≤ B∞, (SRC) with respect to B, (MOM) with respect to σ,L, and

∥

∥[fD]ν − f∗
P

∥

∥

2

γ
≥ τ2K

( 1

n

)

max{α,β}−γ
max{α,β}+p

(9)

with Pn-probability ≥ 1− Cτ r.

In short, Theorem 3.2 says that there is no learning method satisfying a faster decaying γ-learning
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rate than
( 1

n

)

max{α,β}−γ
max{α,β}+p

under the assumptions of Theorem 3.1 and (EVD+). The asymptotic behavior in n of the right hand

side in (9) is called (minimax) lower rate with respect to the γ-power norm or abbreviated γ-lower

rate. Note that special cases of Theorem 3.2 can be found in [4, 33, 3]. In the case of α ≤ β, which

implies the boundedness of f∗
P , the γ-learning rate of LS-SVMs stated in Theorem 3.1 coincides with

the γ-lower rate from Theorem 3.2 and hence is optimal. The optimal rate in the case of α > β, which

does not imply the boundedness of f∗
P , is, even for the L2-norm, an outstanding problem for several

decades which we cannot address, either.

3.3 Remark (Optimality and Boundedness) Under the assumptions of Theorem 3.2, but without re-

quiring the uniform boundedness of f∗
P by some constant B∞, the improved γ-lower rate

( 1

n

)
β−γ
β+p

is satisfied. This requires only a straight forward modification of Lemma 6.13 in Section 6. If we would

be able to prove the γ-learning rates of Theorem 3.1 with a constant K > 0 independent of B∞ then

we would have optimality for all β > α− p instead of β ≥ α.

We think that this would be a valuable next step on the way answering the question of optimality.

However—to the best of our knowledge—[24] is the only article providing learning rates for unbounded

target functions and is based on an empirical process arguments.

Because of (EMB), the next remark is a direct consequence of Theorem 3.1 for γ = α.

3.4 Remark (L∞-Learning Rates) Under the assumptions of Theorem 3.1 in the case of β > α the

following statement is true. For all regularization parameter sequences (λn)n≥1 with λn ≍
(

1
n

)
1

β+p

there is a constant K > 0 independent of n ≥ 1 and τ ≥ 1 such that the LS-SVM D 7→ fD,λn with

respect to H defined by (1) satisfies

∥

∥[fD,λn ]ν − f∗
P

∥

∥

2

L∞(ν)
≤ τ2K

( 1

n

)
β−α
β+p

for all n ≥ 1 sufficiently large with Pn-probability ≥ 1− 4e−τ .

Note that all previous efforts to get L∞-learning rates for the learning scheme (1) need to assume

f∗
P ∈ H. Consequently, we get the very first L∞-learning rates in the hard learning scenario.

4. Example: Besov RKHSs

In this section we illustrate our main results in the case of Besov RKHSs. To this end, we make the

following general assumptions: Let X ⊆ R
d be a non-empty, open, connected and bounded set with a

C∞-boundary and equipped with the Lebesgue σ-algebra B such that (X,B) is complete with respect

to the Lebesgue measure µ. Furthermore, L2(X) := L2(µ) denotes the corresponding L2-space.

First, we briefly introduce the Sobolev and Besov spaces. For a more detailed introduction see e.g.

Adams and Fournier [1]. Since we are only interested in Hilbert spaces, we restrict ourself to this

7



case. For m ∈ N we denote the Sobolev space of smoothness m by Wm(X) := Wm,2(X), see e.g. [1,

Definition 3.2] for a definition. For r > 0 the Besov space Br
2,2(X) is defined by means of the real

interpolation method, namely Br
2,2(X) :=

[

L2(X),Wm(X)
]

r/m,2
, where m := min{k ∈ N : k > r},

see [1, Section 7.30]. For r = 0 we define B0
2,2(X) := L2(X). It is well-known that the Besov spaces

Br
2,2(X) are separable Hilbert spaces and that they satisfy

Br
2,2(X) ∼=

[

L2(X), Bt
2,2(X)

]

r/t,2
(10)

for all t > r > 0, see e.g. [1, Section 7.32] for details. Moreover, for r > d/2 each µ-equivalence class

in Br
2,2(X) has a unique continuous and bounded representative, see [1, Theorem 7.24 (c)]. In fact,

for r > j + d/2, this representative is from the space Cj(X) of j-times continuous differentiable and

bounded functions with bounded derivatives. More precisely, the mapping of a µ-equivalence class to

its (unique) continuous representative is linear and continuous, in short

Br
2,2(X) →֒ Cj(X) . (11)

Consequently, we define, for r > d/2, the Besov RKHS as the set of continuous representatives

Hr(X) := {f ∈ C0(X) : [f ]µ ∈ Br
2,2(X)} and equip this space with the norm ‖f‖Hr(X) := ‖[f ]µ‖Br

2,2(X).

The Besov RKHS Hr(X) is a separable RKHS with respect to a kernel kr. Moreover, kr is bounded

and measurable according to [31, Lemma 4.28 and 4.25].

In the following, we fix a Besov RKHS Hr(X), with r > d/2, and a probability measure P on X×Y

such that the marginal distribution ν = PX on X satisfies ν ≪ µ, µ ≪ ν, and g ≤ dν
dµ ≤ G µ-a.s.

for some constants g,G > 0. For such a marginal distribution we have L2(ν) ∼= L2(X) and we can

describe the power spaces of Hr(X) according to (6), the interpolation property, and (10) by

[Hr(X)]u/rν
∼=

[

L2(ν), [Hr(X)]ν
]

u/r,2
∼=

[

L2(X), [Hr(X)]µ
]

u/r,2
∼= Bu

2,2(X) (12)

for 0 < u < r. As a consequence of (12), if f∗
P ∈ Bs

2,2(X) for some 0 < s < r, then (SRC) is satisfies

with β = s/r. Next, if we combine (12) and (11) then we get (EMB) for all α with d
2r < α < 1:

[Hr(X)]αν
∼= Bαr

2,2(X) →֒ C0(X) →֒ L∞(ν) .

Finally, we consider the asymptotic behavior of the eigenvalues (µi)i≥1 of the integral operator Tν .

According to [5, Equation (4.4.12)] the eigenvalue µi of Tν equals the squares of the approximation

numbers a2i (Iν) of the embedding Iν : Hr(X) → L2(ν). Since L2(ν) ∼= L2(X) these approximation

numbers are described in [12, Equation (4) on p. 119] by

µi = a2i (Iν) ≍ i−2r/d .

To sum up, the eigenvalues satisfy (EVD+) for p = d
2r . The following corollaries are direct conse-

quences of Theorem 3.1 and Theorem 3.2 with p = d
2r , β = s/r, γ = t/r, and α > p sufficient close to

p.

4.1 Corollary (Besov-Learning Rates) Let Hr(X) be a Besov RKHS with r > d/2 and P be a probability

8



distribution on X × Y such that |P |2 < ∞ and the marginal distribution ν := PX satisfies ν ≪ µ,

µ ≪ ν, and g ≤ dν
dµ ≤ G for some constants g,G > 0. Furthermore, we assume that there are

constants B,B∞ > 0, such that ‖f∗
P ‖L∞(µ) ≤ B∞ and ‖f∗

P‖Bs
2,2(X) ≤ B for some 0 < s < r, and that

the Condition (MOM) is satisfied. Then for 0 ≤ t < s and a regularization parameter sequence (λn)n≥1

with λn ≍
(

1
n

)
r

s+d/2 there is a constant K > 0 independent of n ≥ 1 and τ ≥ 1 such that the LS-SVM

D 7→ fD,λn with respect to the Besov RKHS Hr(X) defined by (1) satisfies

∥

∥[fD,λn ]µ − f∗
P

∥

∥

2

Bt
2,2(X)

≤ τ2K
( 1

n

)
s−t

s+d/2

for sufficient large n ≥ 1 with Pn-probability ≥ 1− 4e−τ .

Note that the Bt
2,2-learning rate is independent of the chosen Besov RKHS Hr(X). Besides r > d/2

the only requirement on the choice of Hr(X), a user has to take care of, is r > s. Recall that the case

t = 0 corresponds to L2-learning rates.

4.2 Corollary (Besov-Lower Rates) Let Hr(X) be a Besov RKHS with r > d/2 and ν be a probability

distribution on X with ν ≪ µ, µ ≪ ν, and g ≤ dν
dµ ≤ G for some constants g,G > 0. Then for

all parameters 0 ≤ t < s < r , ε > 0 sufficient small, and all constants σ,L,B,B∞ > 0 there exist

K,C, r > 0 such that for all learning methods D 7→ fD, all τ > 0 and n ≥ 1 sufficient large there is

a distribution P on X × Y with PX = ν satisfying ‖f∗
P‖2L∞(ν) ≤ B∞, ‖f∗

P ‖2Bt
2,2(X)

≤ B, (MOM) with

respect to σ,L, and

(i) in the case of s ≤ d/2
∥

∥[fD]µ − f∗
P

∥

∥

2

Bt
2,2(X)

≥ τ2K
( 1

n

)1/2−t/d+ε

(ii) in the case of s > d/2
∥

∥[fD]µ − f∗
P

∥

∥

2

Bt
2,2(X)

≥ τ2K
( 1

n

)
s−t

s+d/2

with Pn-probability ≥ 1− Cτ r.

Note that in the case of s ≤ d/2 the ε > 0 appears in the lower rate because we have to choose

α > p. In short, Corollary 4.2 says that the learning rates from Corollary 4.1 are optimal in the case

of s > d/2. Finally, if we even have s > j + d/2, for some integer j ≥ 0, then the combination of

Corollary 4.1 and (11) yields Cj(X)-learning rates. To this end, we denote by f∗
P the unique continuous

representative of the µ-equivalence class f∗
P .

4.3 Remark (Cj(X)-Learning Rates) Under the assumption of Corollary 4.1 in the case of s > j+d/2

for some integer j ≥ 0 the following statement is true. For all 0 < ε < s−(j+d/2)
s+d/2 and each regularization

parameter sequence (λn)n≥1 with λn ≍
(

1
n

)
r

s+d/2 there is a constant K > 0 independent of n ≥ 1 and

τ ≥ 1 such that the LS-SVM D 7→ fD,λn with respect to the Besov RKHS Hr(X) defined by (1) satisfies

∥

∥fD,λn − f∗
P

∥

∥

2

Cj(X)
≤ τ2K

( 1

n

)

s−(j+d/2)
s+d/2

−ε

for sufficient large n ≥ 1 with Pn-probability ≥ 1− 4e−τ .
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Note that learning rates for the Besov RKHS are already investigated e.g. by Steinwart et al. [33]

but only for the L2(X)-norm. Our contributions are learning rates with respect to the Bt
2,2(X)-norm

and the Cj(X)-norm.

5. Comparison

In this section we compare our results with learning rates previously obtained in the literature. Since

in the case of f∗
P ∈ [H]βν with 1 ≤ β ≤ 2 we just recover the well-known optimal rates n

−β−γ
β+p obtained

by many authors, see e.g. [4, 16] for L2-rates and [3, 18] for general γ-rates, we focus on the hard

learning scenario 0 < β < 1. Furthermore, due to the large amount of results in the literature we

limit our considerations to the best known results for the learning scheme (1), namely [31, 33], which

use empirical process techniques and [16, 18], which use integral operator techniques. Moreover, we

assume that P is concentrated on X × [−M,M ] for some M > 0 and that k is a bounded measurable

kernel with separable RKHS H. Note that these assumptions form the largest common ground under

which all the considered contributions achieve L2-learning rates. In addition, [18] is the only result

of the four articles listed above that considers general γ-learning rates. Finally, in order to keep the

comparison clear we ignore log-terms in the learning rates. In Table 1 we give a short overview of the

learning rates and in Figure 1 we plot the exponent r of the polynomial L2-learning rates n−r over the

smoothness 0 < β < 1 of f∗
P ∈ [H]βν for some fixed 0 < p ≤ α ≤ 1.

Articles Assumptions Learning Rates n−r

(EMB) (EVD) (exponent) in

[H ]α
ν
→֒ L∞(ν) µi 4 i−

1

p L2(ν) [H]γν for γ < β

our results
0 < α ≤ 1 0 < p ≤ α β

max{β+p,α}

β−γ
max{β+p,α}

Steinwart and Christmann [31, Thm. 7.23] + (EMB)

x

Steinwart et al. [33, Thm. 1] 0 < α ≤ 1 0 < p ≤ α β
max{β+p,β+α(1−β)}

Steinwart et al. [33, Cor. 6] 0 < α ≤ 1 p = α β
β+α

Steinwart and Christmann [31, Eq. (7.54)]

α = 1 0 < p ≤ 1 β
max{β+p,1}Lin and Cevher [16, Cor. 6]

Lin et al. [18, Cor. 4.4] β−γ
max{β+p,1}

Table 1: Learning rates established by different authors for f∗
P ∈ [H]βν with 0 < β < 1. In order to keep

the comparison clear we ignore log-terms in the learning rates. The blue results are based
on integral operator techniques and the green ones are based on empirical process techniques.
The marked parameter ranges are more restrictive than ours and the marked rates are never
better than our rates and at least for some parameter ranges worse than our rates.

Integral operator techniques: Lin and Cevher [16], which is an extended version of the conference

paper [17], investigates distributed gradient decent methods and spectral regularization algorithms. In

[16, Corollary 6] they provide the L2-learning rate n
− β

max{β+α,1} (in expectation) for spectral regular-

ization algorithms, containing the learning scheme (1) as special case. Lin et al. [18] establish the

γ-learning rate n
− β−γ

max{β+p,1} (in probability) for spectral regularization algorithms under more general

source conditions, see [18, Equation (18)]. Both articles, [16] and [18], do not take into account any

embedding property and hence in case of (EMB) with α < 1 we improve their rates iff β + p < 1. Let

10



0 p α 1

0
1/
2

1

0 p α 1

0
1/
2

1

our result and
[31, Thm. 7.23]
+ (EMB).

[33, Thm. 1]

[33, Cor. 6]

[31, Eq. (7.54)],
[16, Cor. 6], and
[18, Cor. 4.4].

Figure 1: Plot of the exponent r of the L2-learning rate n−r over the smoothness β of f∗
P for a fixed

RKHS H and a fixed marginal distribution ν = PX which satisfy (EMB) and (EVD) with
respect to α resp. p. Consequently, higher values correspond to faster learning rates. In
the gray shaded range the best rates are know to be optimal. The left plot corresponds to
α = 1/2 and p = 1/4 whereby the right plot corresponds to α = 3/4 and p = 1/2.

us illustrate this improvement in the case of a Besov RKHS Hr(X) with smoothness r. To this end,

we assume f∗
P ∈ Bs

2,2(X) for some s > 0. Besides the condition r > d/2, which ensures that Hr(X) is

a RKHS, the only requirement is r > s in order to achieve the fastest known L2-learning rate n− 2s
2s+d .

Recall that this rate is independent of the smoothness r and is know to be optimal for s > d/2. In

order to get the same L2-learning rate by the results of [16, 18] the additional constraint r < s+ d/2

has to be satisfied. Otherwise, [16, 18] only yield the L2-rate n−s/r, which gets worse with increasing

smoothness r. Consequently, taking (EMB) into account facilitates the choice of r. Moreover, for

learning rates with respect to Besov norms our results improve those of [18] in a similar way.

Empirical process techniques: [31] provide an oracle inequality in [31, Theorem 7.23] under a

slightly weaker assumptions than (EVD) and (SRC). As already mentioned in [31, Equation (7.54)],

this oracle inequality together with [31, Example 7.3] leads to the L2-rate n
− β

max{β+p,1} . Consequently,

the rate in [31, Equation (7.54)] coincides with the results in [16, 18] and is even better by a logarithmic

factor. Inspired by Mendelson and Neeman [19, Lemma 5.1] Steinwart et al. used an embedding

property, slightly weaker than (EMB), for the first time in [33, Theorem 1]. Moreover, [33, Theorem 1]

was used in [33, Corollary 6] to establish, in the case of p = α, the L2-rate n
− β

β+α . But the proof

remains valid in the general case p ≤ α and hence [33, Theorem 1] yields the rate n
− β

max{β+p,β+α(1−β)} .

This rate is worse than ours iff α < 1 and β < 1 − p/α. If we combine [31, Theorem 7.23 and

Example 7.3] with (EMB) then we recover our L2-rate from Theorem 3.1 even without logarithmic

factor. Finally, it is to mention that [31, 33] consider the clipped predictor. The influence of this

clipping is not clear, but it maybe the reason for avoiding the logarithmic factors appearing in some

results obtained by the integral operator techniques.

To sum up, we use the integral operator technique to recover the best known, and in many cases

optimal, L2-learning rates previously only obtained by the empirical process technique. In addition,

we improve the best known γ-learning rates from [18] for the learning scheme (1) whenever (EMB)

is satisfied for 0 < α < 1 as well as (SRC) and (EVD) are satisfied for β + p < 1. Recall that the

11



empirical process technique is not able to provide general γ-learning rates yet. Finally, we show that

our γ-learning rates are optimal in all cases where the optimal L2-norm learning rate is known.

6. Proofs

First, we summarize some well-known facts that we need for the proofs of our main results. To this

end, we use the notation and general assumptions from Section 2.

Since we assume that H is separable according to [32, Corollary 3.2] there exists a ν-zero set N ⊆ X,

such that k is given by

k(x, x′) =
∑

i≥1

µiei(x)ei(x
′)

for all x, x′ ∈ X\N . Furthermore, the boundedness of k implies
∑

i≥1 µie
2
i (x) ≤ A2 for ν-a.a. x ∈ X

and a constant A ≥ 0. Motivated by this statement we say, for α > 0, that the α-power of k is ν-a.s.

bounded if there exists a constant A ≥ 0 with

∑

i≥1

µα
i e

2
i (x) ≤ A2 (13)

for ν-a.a. x ∈ X. Furthermore, we write ‖kαν ‖∞ for the smallest constant with this property and set

‖kαν ‖∞ := ∞ if there is no such constant. Consequently, ‖kαν ‖∞ < ∞ is an abbreviation of the phrase

the α-power of k is ν-a.s. bounded. We refer to [32, Proposition 4.2] for the logic behind this notation.

Because of the above introduction ‖k1ν‖∞ < ∞ is always satisfied. Since the measurable spaces (X,B)
is ν-complete the following theorem from [32, Theorem 5.3] gives an equivalent characterization.

6.1 Theorem (L∞-Embeddings) For 0 < α ≤ 1 the following statements are equivalent:

(i) The α-power of k is ν-a.s. bounded.

(ii) [H]αν →֒ L∞(ν).

If one (and thus both) of the statements above is true, we have

‖[H]αν →֒ L∞(ν)‖ = ‖kαν ‖∞ .

Note that the claimed equality is not a part of [32, Theorem 5.3] but it is contained in the proof of

that theorem. The following lemma summarizes further implications of the embedding property.

6.2 Lemma For 0 < p,α ≤ 1 the following statements are true:

(i) (EMB) implies ‖[ei]ν‖L∞(ν) ≤ ‖kαν ‖∞µ
−α/2
i for all i ≥ 1.

(ii) (EMB) implies (µi)i≥1 ∈ ℓα(N). If, in addition, the eigenfunctions are uniformly bounded, i.e.

supi≥1 ‖[ei]ν‖L∞(ν) < ∞, then the inverse implication is true.

(iii) (EMB) implies (EVD) for p = α. If, in addition, the eigenfunctions are uniformly bounded, then

(EVD) w.r.t. p implies (EMB) for all α > p.

Note that uniformly bounded eigenfunction have been considered e.g. in [19, Assumption 4.1] and

[33, Theorem 2], see also the discussion after [32, Theorem 5.3].
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Proof. (i) is clear since (µ
α/2
i [ei]ν)i≥1 is an ONB of [H]αν . (ii) From [32, Proposition 4.4] we know

∑

i≥1 µ
α
i ≤ ‖kαν ‖2∞ < ∞. The inverse is a consequence of (13). (iii) follows from (ii) together with

the monotonicity of the eigenvalues (µi)i≥1. The inverse is a consequence of: (EVD) w.r.t. p implies

(µi)i≥1 ∈ ℓα(N) for α > p.

The effective dimension Nν : (0,∞) → [0,∞) is defined by

Nν(λ) := tr
(

(Cν + λ)−1Cν

)

=
∑

i≥1

µi

µi + λ

for λ > 0, where tr denotes the trace operator. This quantity is widely used in the statistical analysis

of LS-SVMs, see e.g. [4, 3, 16, 18], and depends on the decay of the eigenvalues (µi)i≥1. More precisely,

(EVD) for 0 < p ≤ 1 is equivalent to the existence of a constant Cp > 0 with

Nν(λ) ≤ Cp λ
−p (14)

for all λ > 0. In the case p < 1 we can choose Cp = Cp/(1 − p) according to [4, Proposition 3]. For

p(= α) = 1 we have Nν(λ) ≤ ‖Cν‖1 ‖(Cν + λ)−1‖ ≤ ‖Cν‖1 λ−1 and ‖Cν‖1 =
∑

i≥1 µi ≤ ‖kαν ‖2∞ =: Cp.

For the inverse implication we combine (14) with i µi
µi+λ ≤ Nν(ν) and λ = µi to get (EVD) with

C = (2Cp)
1/p.

The LS-risk of a measurable function f : X → R is defined by

RP (f) :=

∫

X×Y
(y − f(x))2 dP (x, y)

and the Bayes-LS-risk R∗
P := inff :X→RRP (f) is achieved by the conditional mean function f∗

P . More-

over, the LS-excess-risk is given by RP (f) − R∗
P = ‖[f ]ν − f∗

P‖2L2(ν)
and minimizing the LS-risk is

equivalent to approximating the conditional mean function in the L2(ν)-norm. For λ > 0 the unique

minimizer of

inf
f∈H

{

λ‖f‖2H +RP (f)
}

(15)

is given by

fP,λ := (Cν + λ)−1gP ∈ H , (16)

with gP := Sνf
∗
P and some times called infinite sample solution. As already mentioned in the proof of

[29, Theorem 4] the spectral decomposition in (4) yields

fP,λ =
∑

i≥1

µ
1/2
i

µi + λ
ai µ

1/2
i ei ∈ (ker Iν)

⊥, and f∗
P − [fP,λ]ν =

∑

i≥1

λ

µi + λ
ai [ei]ν , (17)

with ai := 〈f∗
P , [ei]ν〉L2(ν) for i ≥ 1. For the second identity in (17) we have to assume f∗

P ∈ [H]0ν .

Note that the predictor fD,λ, for a data set D = {(xi, yi)}ni=1, given in (1) is the unique minimizer

of (15) w.r.t. the empirical measure D := 1
n

∑n
i=1 δ(xi,yi) and hence fD,λ is given by (16) w.r.t. the

corresponding empirical quantities. For the later proof we will need the integral operator CDX
: H → H

w.r.t. the empirical marginal distribution DX = 1
n

∑n
i=1 δxi on X. In order to avoid subsubscripts we

denote this operator by CD.
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6.1. Some Bounds

In this section we further exploit the spectral representations in (4). The first lemma describes the

connection of the γ-power norm and the H-norm.

6.3 Lemma For 0 ≤ γ ≤ 1 and f ∈ H we have ‖[f ]ν‖γ ≤
∥

∥C
1−γ
2

ν f
∥

∥

H
. If, in addition, γ < 1 or

f ⊥ ker Iν is satisfied then we have equality.

Proof. Let us fix a function f ∈ H. Because (µ
1/2
i ei)i≥1 is an ONB of (ker Iν)

⊥, there exits a g ∈ ker Iν

with f =
∑

i≥1 aiµ
1/2
i ei + g, where ai = 〈f, µ1/2

i ei〉H for all i ≥ 1. Since (µ
γ/2
i [ei]ν)i≥1 is an ONB of

[H]γν Parseval yields

‖[f ]ν‖2γ =
∥

∥

∥

∑

i≥1

aiµ
1−γ
2

i µ
γ/2
i [ei]ν

∥

∥

∥

2

γ
=

∑

i≥1

µ1−γ
i a2i .

For γ < 1 the spectral decomposition in (4) together with Parseval w.r.t. the ONS (µ
1/2
i ei)i≥1 in H

yields

‖C
1−γ
2

ν f‖2H =
∥

∥

∥

∑

i≥1

µ
1−γ
2

i aiµ
1/2
i ei

∥

∥

∥

2

H
=

∑

i≥1

µ1−γ
i a2i .

For γ = 1 we have C
1−γ
2

ν = IdH . Pythagoras and Parseval w.r.t. the ONS (µ
1/2
i ei)i≥1 in H yields

‖C
1−γ
2

ν f‖2H =
∥

∥

∥

∑

i≥1

aiµ
1/2
i ei + g

∥

∥

∥

2

H
=

∥

∥

∥

∑

i≥1

aiµ
1/2
i ei

∥

∥

∥

2

H
+ ‖g‖2H =

∑

i≥1

a2i + ‖g‖2H .

The next lemma describes how the effective dimension comes into play. Parts of this lemma are

already contained in [27, Assumption 3] and the following discussion.

6.4 Lemma The following statements are satisfied for all λ > 0:

(i) If ‖kαν ‖∞ < ∞ then ‖(Cν + λ)−1/2k(x, ·)‖2H ≤ ‖kαν ‖2∞λ−α for ν-a.a. x ∈ X.

(ii)
∫

X ‖(Cν + λ)−1/2k(x, ·)‖2H dν(x) = Nν(λ).

Proof. Let us fix λ > 0. Since H is separable and k measurable the map X → H, x 7→ k(x, ·) is

measurable, see [31, Lemma 4.25]. Consequently, ‖(Cν + λ)−1/2k(x, ·)‖2H depends measurable on x.

Let us fix an arbitrary ONB (ej)j∈J of ker Iν . Thus, (µ
1/2
i ei)i≥1 ∪ (ej)j∈J is an ONB of H and k

satisfies

k(x, ·) =
∑

i≥1

µ
1/2
i ei(x)µ

1/2
i ei +

∑

j∈J
ej(x)ej .

for all x ∈ X. Together with the spectral decomposition in (4) and Parseval we get

‖(Cν + λ)−1/2k(x, ·)‖2H =
∑

i≥1

µi

µi + λ
e2i (x) +

1

λ

∑

j∈J
e2j (x)

for all x ∈ X. Since H is separable the index set J is at most countable. Moreover, ej ∈ ker Iν for

all j ∈ J implies that the second summand on the r.h.s. vanishes for ν-a.a. x ∈ X. Consequently, we

have

‖(Cν + λ)−1/2k(x, ·)‖2H =
∑

i≥1

µi

µi + λ
e2i (x)

14



for ν-a.a. x ∈ X. Now, Statement (i) is a consequence of Lemma A.1

∑

i≥1

µi

µi + λ
e2i (x) =

∑

i≥1

µ1−α
i

µi + λ
µα
i e

2
i (x) ≤

(

∑

i≥1

µα
i e

2
i (x)

)

sup
i≥1

µ1−α
i

µi + λ
≤ ‖kαν ‖2∞λ−α

for ν-a.a. x ∈ X. In order to prove Statement (ii) we use the fact that ([ei])i≥1 is an ONS in L2(ν)

and the monotone convergence theorem

∫

X
‖(Cν + λ)−1/2k(x, ·)‖2H dν(x) =

∑

i≥1

µi

µi + λ

∫

X
e2i (x) dν(x) = tr

(

(Cν + λ)−1Cν

)

.

The next lemma uses the representations in (17) to provide bounds on the γ-power norm of fP,λ

and f∗
P − fP,λ.

6.5 Lemma Let f∗
P ∈ [H]βν for some 0 ≤ β ≤ 2. Then the following bounds are satisfied for λ > 0:

‖[fP,λ]ν − f∗
P‖2γ ≤ ‖f∗

P ‖2β λβ−γ for 0 ≤ γ ≤ β, (18)

‖[fP,λ]ν‖2γ ≤ ‖f∗
P ‖2γ∧βλ−(γ−β)+ for γ ≥ 0. (19)

Here we used the abbreviation (γ− β)+ = max{0, γ −β}. Note that (18) in the case of γ ∈ {0, 1} is

contained in [29, Theorem 4]. Since, in the case β ≥ γ = 1, the ν-equivalence class f∗
P has a (unique)

representative f∗
P ∈ H with f∗

P ⊥ ker Iν and fP,λ ⊥ ker Iν holds according to (17) we can use the

equality from Lemma 6.4 and exchange the left hand side of (18) and (19) by ‖fP,λ − f∗
P‖H resp.

‖fP,λ‖H .

Proof. (18) Since f∗
P ∈ [H]βν ⊆ [H]0ν we can use the spectral representations in (17). Parseval w.r.t.

the ONB (µ
γ/2
i [ei]ν)i≥1 of [H]γν yields

∥

∥f∗
P − [fP,λ]ν

∥

∥

2

γ
= λ2

∑

i≥1

( µ
−γ/2
i

µi + λ

)2
a2i = λ2

∑

i≥1

( µ
β−γ
2

i

µi + λ

)2
µ−β
i a2i .

If we estimate the fraction on the r.h.s. with Lemma A.1 and use the fact, that (µ
β/2
i [ei]ν)i≥1 is an

ONB of [H]βν , we get
∥

∥f∗
P − [fP,λ]ν

∥

∥

2

γ
≤ λβ−γ

∑

i≥1

µ−β
i a2i = λβ−γ‖f∗

P ‖2β .

(19) Again the spectral representation in (17) together with Parseval yields

‖[fP,λ]ν‖2γ =
∑

i≥1

( µi

µi + λ

)2
µ−γ
i a2i .

In the case of γ ≤ β we estimate the fraction by 1 and then Parseval gives us

‖[fP,λ]ν‖2γ ≤
∑

i≥1

µ−γ
i a2i = ‖f∗

P ‖2γ .
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In the case of γ > β additionally use Lemma A.1 and get

‖[fP,λ]ν‖2γ =
∑

i≥1

(µ
1− γ−β

2
i

µi + λ

)2
µ−β
i a2i ≤ λ−(γ−β)

∑

i≥1

µ−β
i a2i = λ−(γ−β)‖f∗

P ‖2β .

From the bounds obtained in the previous lemma we directly get the following L∞(ν) bounds. Note

that some parts of the following lemma are already known from [32, Corollary 5.5].

6.6 Corollary Let f∗
P ∈ [H]βν and ‖kαν ‖∞ < ∞ for some 0 ≤ β ≤ 2 and 0 < α ≤ 1. Then the following

bounds are satisfied for λ > 0:

‖[fP,λ]ν − f∗
P ‖2L∞(ν) ≤ 2

(

‖f∗
P ‖2L∞(ν) + ‖kαν ‖2∞‖f∗

P ‖2β
)

λβ−α if f∗
P ∈ L∞(ν) and λ ≤ 1, (20)

‖[fP,λ]ν‖2L∞(ν) ≤ ‖kαν ‖2∞‖f∗
P‖2α∧βλ−(α−β)+ . (21)

Proof. (21) is a direct consequence of Theorem 6.1 and (19) with γ = α. (20) In the case of β ≤ α we

use the triangle inequality, Inequality (21), and λ ≤ 1

‖f∗
P − [fP,λ]ν‖2L∞(ν) ≤ 2‖f∗

P ‖2L∞(ν) + 2‖[fP,λ]ν‖2L∞(ν)

≤ 2
(

‖f∗
P‖2L∞(ν) + ‖kαν ‖2∞‖f∗

P ‖2β
)

λ−(α−β) .

In the case of β > α we use Theorem 6.1 and (18)

‖f∗
P − [fP,λ]ν‖2L∞(ν) ≤ ‖kαν ‖2∞‖f∗

P − [fP,λ]ν‖2α ≤ ‖kαν ‖2∞‖f∗
P ‖2β λβ−α .

6.2. Upper Rates

Using the standard technique, we split ‖[fD,λ]ν − f∗
P‖γ into two parts:

∥

∥[fD,λ]ν − f∗
P

∥

∥

γ
≤

∥

∥[fD,λ − fP,λ]ν
∥

∥

γ
+

∥

∥[fP,λ]ν − f∗
P

∥

∥

γ
, (22)

the estimation error ‖[fD,λ − fP,λ]ν‖γ and the approximation error ‖[fP,λ]ν − f∗
P‖γ . A bound on the

approximation error is given in Lemma 6.5 and the following oracle inequality controls the estimation

error.

6.7 Theorem (Estimation Error - Oracle Inequality) Let H be a separable RKHS on X w.r.t. a bounded

and measurable kernel k, P be a probability measure on X×Y with |P |2 < ∞ and marginal distribution

ν = PX , and 0 ≤ γ ≤ 1. Furthermore, we assume ‖f∗
P‖L∞(ν) < ∞, (SRC) with β = γ, (EMB) for

0 < α ≤ 1, and (MOM). If we define the abbreviations

(i) gλ := log
(

2eNν(λ)
‖Cν‖+λ
‖Cν‖

)

,

(ii) Aλ,τ := 8‖kαν ‖2∞τgλλ
−α, and

(iii) Lλ := max{L, ‖f∗
P − [fP,λ]ν‖L∞(ν)}
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then for τ ≥ 1, λ > 0, and n ≥ Aλ,τ we have with Pn-probability ≥ 1− 4e−τ

∥

∥

∥
C

1−γ
2

ν

(

fD,λ − fP,λ
)

∥

∥

∥

2

H
≤ 576τ2

nλγ

(

σ2Nν(λ) + ‖kαν ‖2∞
‖f∗

P − [fP,λ]ν‖2L2(ν)

λα
+ 2‖kαν ‖2∞

L2
λ

nλα

)

.

According to Lemma 6.3 the same result is true for ‖[fD,λ − fP,λ]ν‖2γ . Moreover, in the case of

γ = 1 the left hand side coincides with ‖fD,λ − fP,λ‖H . Our proof is base on an argument tracing

back to [30]. We refine the analysis with some ideas from [4] and [16] under the embedding property.

We split the proof into several lemmas: the fist one improves [16, Lemma 18] under the additional

Assumption (EMB).

6.8 Lemma Let the assumptions of Theorem 6.7 be satisfied. For τ ≥ 1, λ > 0, and n ≥ 1 the operator

norm satisfies with νn-probability ≥ 1− 2e−τ

∥

∥(Cν + λ)−1/2(Cν − CD)(Cν + λ)−1/2
∥

∥ ≤ 4‖kαν ‖2∞τgλ
3nλα

+

√

2‖kαν ‖2∞τgλ
nλα

.

Proof. First, we define Cx : H → H the integral operator w.r.t. the point measure at x ∈ X, i.e.

Cxf = f(x)k(x, · ) = 〈f, k(x, · )〉H k(x, · ) .

Since the operator Cx has rank one Cx is a Hilbert-Schmidt operator. Now, we consider the random

variable ξ1 : X → L2(H),

ξ1(x) := (Cν + λ)−1/2Cx(Cν + λ)−1/2

with values in the space of Hilbert-Schmidt operators on H. Since H is a separable RKHS w.r.t. a

measurable and bounded kernel, the map X → L2(H), x 7→ Cx is bounded and measurable. Moreover,

the maps x 7→ Cx and x 7→ ξ1(x) are Bochner integrable w.r.t. a arbitrary probability measure µ on

X and [10, Chapter II.2 Theorem 6] yields

Eµξ1 = (Cν + λ)−1/2
(

Ex∼µCx

)

(Cν + λ)−1/2 = (Cν + λ)−1/2Cµ(Cν + λ)−1/2

If we exploit this identity in the case of µ = ν = PX and µ = DX , then we get

1

n

n
∑

i=1

(

ξ1(xi)− Eνξ1
)

= EDX
ξ1 − Eνξ1 = (Cν + λ)−1/2(CD − Cν)(Cν + λ)−1/2

for all D = ((xi, yi))
n
i=1 ∈ (X × Y )n. Using the self-adjointness of (Cν + λ)−1/2 we get ξ1(x) =

〈 · , hx〉H hx with hx := (Cν + λ)−1/2k(x, ·) ∈ H for all x ∈ X. An application of Lemma 6.4 yields the

supremum bound

‖ξ1(x)‖ = ‖hx‖2H ≤ ‖kαν ‖2∞λ−α =: B

for ν-a.a. x ∈ X. For two self-adjoint operators A,B on a Hilbert space we write A 4 B iff B−A is a

positive operator. Since ξ1(x)
2 = ξ1(x)‖hx‖2H 4 Bξ1(x) also the variance bound

Eν(ξ
2
1) 4 BEνξ1 = B(Cν + λ)−1Cν =: V .
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Moreover, we have ‖V ‖ = B ‖Cν‖
‖Cν‖+λ ≤ B and tr(V ) = BNν(λ). Consequently, Theorem A.3 is

applicable and yields the assertion because of g(V ) = gλ.

6.9 Lemma Let the assumptions of Theorem 6.7 be satisfied. For τ ≥ 1, λ > 0 and n ≥ 1, we have

with νn-probability ≥ 1− 2e−τ

∥

∥(Cν + λ)−1/2
(

(gD − CDfP,λ)− (gP − CνfP,λ)
)
∥

∥

2

H

≤ 64τ2

n

(

σ2Nν(λ) + ‖kαν ‖2∞
‖f∗

P − [fP,λ]ν‖20
λα

+ 2‖kαν ‖2∞
max

{

L2, ‖f∗
P − [fP,λ]ν‖2L∞(ν)

}

nλα

)

.

Proof. We consider the random variable ξ2 : X × Y → H,

ξ2(x, y) := (y − fP,λ(x))(Cν + λ)−1/2k(x, ·) .

Since H is a separable RKHS w.r.t. a bounded and measurable kernel and (MOM) is satisfied, the

maps ξ2 and (x, y) 7→ (y − fP,λ(x))k(x, ·) are measurable and Bochner integrable w.r.t. P and the

empirical measure D. [10, Chapeter II.2 Theorem 6] yields for Q ∈ {P,D}

EQξ2 = (Cν + λ)−1/2
(

E(x,y)∼Qyk(x, · )− Ex∼QX
fP,λ(x)k(x, · )

)

= (Cν + λ)−1/2(gQ − CQX
fP,λ) .

Consequently, we get

1

n

n
∑

i=1

(

ξ2(xi, yi)− EP ξ2

)

= EDξ2 − EP ξ2 = (Cν + λ)−1/2
(

(gD − CDfP,λ)− (gP − CνfP,λ)
)

.

In order to apply Bernstein’s inequality we need to bound the m-th moment for m ≥ 2:

EP‖ξ2‖mH =

∫

X
‖(Cν + λ)−1/2k(x, ·)‖mH

∫

Y
|y − fP,λ(x)|m P (dy|x) dν(x) . (23)

First, we consider the inner integral: Using the triangle inequality and (MOM) yields

∫

Y
|y − fP,λ(x)|m P (dy|x) ≤ 2m−1

(

‖ idY −f∗
P (x)‖mLm(P (·|x)) + |f∗

P (x)− fP,λ(x)|m
)

≤ 1

2
m!(2L)m−22σ2 + 2m−1|f∗

P (x)− fP,λ(x)|m .

for ν-a.a. x ∈ X. If we plug this bound into the outer integral we get two terms. For both terms we

use Lemma 6.4. The first term is estimated by

1

2
m!(2L)m−22σ2

∫

X
‖(Cν + λ)−1/2k(x, ·)‖mH dν(x) ≤ 1

2
m!

(

2L‖kαν ‖∞
λα/2

)m−2

2σ2Nν(λ)

18



and the term second by

2m−1

∫

X
‖(Cν + λ)−1/2k(x, ·)‖mH |f∗

P (x)− fP,λ(x)|m dν(x)

≤1

2

(

2‖kαν ‖∞
λα/2

)m

‖f∗
P − [fP,λ]ν‖m−2

L∞(ν)

∫

X
|f∗

P (x)− fP,λ(x)|2 dν(x)

≤1

2
m!

(

2‖kαν ‖∞‖f∗
P − [fP,λ]ν‖L∞(ν)

λα/2

)m−2

2‖f∗
P − [fP,λ]ν‖2L2(ν)

‖kαν ‖2∞
λα

.

Continuing estimate (23) we get that EP‖ξ2‖mH is bounded by

1

2
m!

(

2‖kαν ‖∞
λα/2

max
{

L, ‖f∗
P − [fP,λ]ν‖L∞(ν)

}

)m−2

2
(

σ2Nν(λ) + ‖f∗
P − [fP,λ]ν‖20

‖kαν ‖2∞
λα

)

and an application of Bernstein’s inequality from Theorem A.2 yield the assertion.

Proof of Theorem 6.7. Let us fix τ ≥ 1, λ > 0 and n ≥ Aλ,τ . For D ∈ (X × Y )n the representation

fD,λ = (CD + λ)−1gD from (16), w.r.t. the empirical measure D, yields

C
1−γ
2

ν (fD,λ − fP,λ) = C
1−γ
2

ν (CD + λ)−1(gD − (CD + λ)fP,λ) .

If we combine this with the identity IdH = (Cν + λ)−1/2(Cν + λ)1/2 then we get

∥

∥

∥
C

1−γ
2

ν

(

fD,λ − fP,λ
)

∥

∥

∥

H
≤

∥

∥C
1−γ
2

ν (Cν + λ)−1/2
∥

∥ (24a)

·
∥

∥(Cν + λ)1/2(CD + λ)−1(Cν + λ)1/2
∥

∥ (24b)

·‖(Cν + λ)−1/2(gD − (CD + λ)fP,λ)‖H (24c)

for all D ∈ (X × Y )n. Now, we consider the three factors on the r.h.s. separately. Let us start with

Factor (24a). An application of Lemma A.1 yields

(24a) =
∥

∥C
1−γ
2

ν (Cν + λ)−1/2
∥

∥ = sup
i≥1

( µ1−γ
i

µi + λ

)1/2
≤ λ−γ/2 . (25)

Factor (24c) can be rearranged using fP,λ = (Cν + λ)−1gP from (16)

(Cν + λ)−1/2
(

gD − (CD + λ)fP,λ
)

= (Cν + λ)−1/2
(

gD − (CD − Cν + Cν + λ)fP,λ
)

= (Cν + λ)−1/2
(

(gD − CDfP,λ)− (gP − CνfP,λ)
)

.

Consequently, the square of Factor (24c) coincides with the r.h.s. in Lemma 6.9 and this lemma provides

a suitable bound. Finally, in order to estimate (24b) we start with the following identity

(CD + λ) = (CD −Cν + Cν + λ)

= (Cν + λ)1/2
(

Id−(Cν + λ)−1/2(Cν − CD)(Cν + λ)−1/2
)

(Cν + λ)1/2 .

If we take the inverse and multiply it by the factor (Cν + λ)1/2 from the left and from the right, then
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we get

(24b) =
∥

∥

∥

(

Id−(Cν + λ)−1/2(Cν − CD)(Cν + λ)−1/2
)−1∥

∥

∥
.

Lemma 6.8 gives us an estimate for the operator norm of (Cν+λ)−1/2(Cν−CD)(Cν+λ)−1/2. Continuing

the estimate from Lemma 6.8 with n ≥ Aλ,τ yields

∥

∥(Cν + λ)−1/2(Cν − CD)(Cν + λ)−1/2
∥

∥ ≤ 2

3

with νn-probability ≥ 1− 2e−τ . Consequently, the Neumann series is applicable and gives

(24b) ≤
∞
∑

k=0

(2

3

)k
= 3 (26)

with νn-probability ≥ 1 − 2e−τ . Now, we get the claimed bound, with Pn-probability ≥ 1 − 4e−τ , if

we continue the estimate in (24) with (25), Lemma 6.9, and (26).

Proof of Theorem 3.1. In both cases, β + p ≤ α and β + p > α, for the given asymptotic of the

regularization parameter sequence (λn)n≥1 there is an index bound n0 ≥ 1 such that λn ≤ 1 ∧ ‖Cν‖
and n ≥ Aλn,τ is satisfied for all n ≥ n0. Consequently, for n ≥ n0, we can apply Theorem 6.7.

Together with Lemma 6.3 and (14) we get

‖[fD,λn − fP,λn ]ν‖2γ ≤ K0
τ2

nλ
γ+max{p,α−β}
n

(

1 +
1

nλ
max{α,2α−β}−max{p,α−β}
n

)

.

with K0 = 576max
{

σ2Cp + ‖kαν ‖2∞‖f∗
P‖2β , 2‖kαν ‖2∞ max{L, 2

(

‖f∗
P‖2L∞(ν) + ‖kαν ‖2∞‖f∗

P ‖2β
)

}
}

. Since the

second term inside the brackets is, in both cases, bounded there is a constant K1 > 0 with

‖[fD,λn − fP,λn ]ν‖2γ ≤ K0K1
τ2

nλ
γ+max{p,α−β}
n

.

Together with Equation (22) and Lemma 6.5 we get the assertion, in both cases,

‖[fD,λn ]ν − f∗
P‖2γ ≤ τ22

(

‖f∗
P‖2β +K0K1)λ

β−γ
n .

6.3. Lower Rates

In order to prove γ-lower rates we establish the following lower bound.

6.10 Lemma (Lower Bound) Let H be a separable RKHS on X w.r.t. a bounded and measurable

kernel k, and ν be a probability distribution on X such that (EMB) and (EVD+) are satisfied for

some 0 < p ≤ α ≤ 1. Then, for all parameters 0 < β ≤ 2, 0 ≤ γ ≤ 1 with γ < β and all constants

σ,L,B,B∞ > 0 there exist constants 0 < ε0 ≤ 1 and C1, C2 > 0 such that for all 0 < ε ≤ ε0 there are

probability measures P0, P1, . . . , PMε with marginal distribution ν on X satisfying ‖f∗
Pj
‖2L∞(ν) ≤ B∞,

(SRC) w.r.t. B, and (MOM) w.r.t. σ,L. Moreover, these measures satisfy:

(i) 2C2ε−u ≤ Mε ≤ 23C2ε−u
,

(ii) ‖f∗
Pi

− f∗
Pj
‖2γ ≥ 4ε for all i, j ∈ {0, 1, . . . ,Mε} with i 6= j, and
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(iii) infΨmaxj=0,1,...,Mε P
n
j

(

D : Ψ(D) 6= j
)

≥
√
Mε√

Mε+1

(

1 − C1nε
max{α,β}+p
max{α,β}−γ − 1

2 log(Mε)

)

for all n ≥ 1,

where the infimum is taken over all measurable functions Ψ : (X × Y )n → {0, 1, . . . ,Mε}.

Note that the probability measures Pj also depend on ε although we omit this in the notation. We

recall that just one probability measure ν on X with the required properties is needed to construct

distributions on X×Y that are difficult to learn. The proof is an application of the following theorem

from Tsybakov [36].

6.11 Theorem (Lower Bound) Let P0, P1, . . . , PM be a family of probability measures on a measur-

able space (Ω,A) with M ≥ 2. Moreover, we assume Pj ≪ P0 for all j = 1, . . . ,M and α∗ :=
1
M

∑M
j=1K(Pj , P0) ∈ (0,∞), where K(Pj , P0) denotes the Kullback-Leibler divergence from P0 to Pj .

Then,

inf
Ψ

max
j=0,1,...,M

Pj

(

ω ∈ Ω : Ψ(ω) 6= j
)

≥
√
M√

M + 1

(

1− 3α∗
log(M)

− 1

2 log(M)

)

is satisfied, where the infimum is taken over all measurable functions Ψ : Ω → {0, 1, . . . ,M}.

Proof. From Tsybakov [36, Proposition 2.3] we know, that

sup
0<τ<1

τM

1 + τM

(

1 +
α∗ +

√

α∗
2

log(τ)

)

is a lower bound for the l.h.s. If we choose τ = M−1/2 and use the estimate
√
2α∗ ≤ 1

2 +α∗ afterwards,

then we get the assertion.

We use this theorem for the measurable space Ω = (X × Y )n and follow the suggestion of [4, 3] in

order to construct a family of probability measures P0, P1, . . . , PM . To this end, let the assumptions

of Lemma 6.10 be satisfied and set σ̄ := min{σ,L}. Moreover, we define for a measurable function

f : X → Y and x ∈ X the conditional distribution Pf ( · |x) := N (f(x), σ̄2) as the normal distribution

on Y = R with mean f(x) and variance σ̄2. Consequently, Pf (A) :=
∫

X

∫

Y 1A(x, y) Pf (dy|x) dν(x) for
A ∈ B⊗B(Y ) defines a probability measure onX×Y with marginal distribution ν onX. For this reason

the corresponding power spaces [H]αν are independent of f . Since Pf = Pf ′ is satisfied for f ′ = f ν-a.s.

we define P[f ]ν for ν-equivalence classes. Moreover, for f ∈ L2(ν) we get |Pf |22 = σ̄2+‖f‖2L2(ν)
< ∞ and

the conditional mean function f∗
Pf

of Pf coincides with f . The properties of the normal distribution

implies (MOM) w.r.t. σ = L = σ̄, namely

∫

Y
|y − f(x)|m Pf (dy|x) =

1√
π
Γ
(m+ 1

2

)

(

σ̄
√
2
)m ≤ 1

2
m! σ̄m

for all x ∈ X, where Γ denotes the gamma function. To sum up, we reduced the construction of

probability measures to the construction of functions f0, f1, . . . , fM ∈ L∞(ν) ∩ [H]βν with ‖f‖2L∞(ν) ≤
B∞ and ‖f‖2β ≤ B. Before we start with the construction the following lemma from [3, Proposition 6.2]

describes the Kullback-Leibler divergence between these measures.

6.12 Lemma (Kullback-Leibler Divergence) For f, f ′ ∈ L2(ν) and n ≥ 1 the Kullback-Leibler diver-

gence satisfies

K(Pn
f , P

n
f ′) :=

∫

(X×Y )n
log

(dPn
f

dPn
f ′

)

dPn
f =

n

2σ̄2
‖f − f ′‖2L2(ν)

.
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For the construction of suitable functions we use binary strings ω = (ω1, . . . , ωm) ∈ {0, 1}m and

define

fω := 2
(8ε

m

)1/2
m
∑

i=1

ωi µ
γ/2
i+m[ei+m]ν

for 0 < ε ≤ 1. Since the sum is finite we have fω ∈ [H]ν ⊆ L∞(ν)∩ [H]βν . Next, we establish sufficient

conditions on ε and m such that the bounds ‖fω‖2L∞(ν) ≤ B∞ and ‖fω‖2β ≤ B are satisfied.

6.13 Lemma Under the assumptions of Lemma 6.10 there is are constants U > 0 and 0 < ε1 ≤ 1 such

that the bounds ‖fω‖2β ≤ B and ‖fω‖2L∞(ν) ≤ B∞ are satisfied for all 0 < ε ≤ ε1 and all m ≤ Uε−u

with u := p
max{α,β}−γ .

Proof. Let us fix m ∈ N and 0 < ε ≤ 1. (EVD+) and γ < β implies

‖fω‖2β =
32ε

m

m
∑

i=1

ω2
i µ

−(β−γ)
i+m ≤ 32 εµ

−(β−γ)
2m ≤ 32cγ−β2

β−γ
p εm

β−γ
p .

Consequently, for m ≤ U1ε
− p

β−γ with U1 := 1
2c

p
(

B/32
)

p
β−γ we have ‖fω‖2β ≤ B. In the case of

γ < α the embedding property (EMB) ‖[H]αν →֒ L∞(ν)‖ =: A together with an analogues argument

yields ‖fω‖2L∞(ν) ≤ B∞ for m ≤ U2ε
− p

α−γ with U2 := 1
2c

p
(

B∞
32A2

)
p

α−γ . So for U := min{U1, U2} and

ε1 := min{1, U1/u} we get the assertion. In the case of γ ≥ α (EVD) implies

‖fω‖2L∞(ν) ≤ A2‖fω‖2α ≤ 32ε

m
A2

m
∑

i=1

µγ−α
i+m ≤ 32A2 εµγ−α

m ≤ 32A2Cγ−αεm− γ−α
p (27)

and we get ‖fω‖2L∞(ν) ≤ B∞ for 0 < ε ≤ B∞
32A2Cγ−α . Since γ ≥ α implies β > α the assertion follows

for U := U1 and ε1 := min{ B∞
32A2Cγ−α , U

1/u
1 }.

If ω′ = (ω′
1, . . . , ω

′
m) ∈ {0, 1}m is an other binary string, we investigate the norm of the difference

fω − fω′ . To this end, we set v := γ
p and use an analogue estimate as in (27), for α = 0, which yields

‖fω − fω′‖2L2(ν)
≤ 32Cγ εm−v . (28)

In order to obtain a lower bound on the γ-power norm, we assume
∑m

i=1(ωi − ω′
i)
2 ≥ m

8 , i.e. the

distance between ω and ω′ is large:

‖fω − fω′‖2γ =
32ε

m

m
∑

i=1

(ωi − ω′
i)
2 ≥ 4ε . (29)

The following lemma is from Tsybakov [36, Lemma 2.9] and suggests that there are many binary

strings with large distances.

6.14 Lemma (Gilbert-Varshamov Bound) For m ≥ 8 and M ≥ 2m/8 there exist binary strings

ω(0), . . . , ω(M) ∈ {0, 1}m with ω(0) = (0, . . . , 0) and

m
∑

i=1

(

ω
(j)
i − ω

(k)
i

)2 ≥ m

8
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for all j 6= k, where ω(k) = (ω
(k)
1 , . . . , ω

(k)
m ).

Now, we are ready to prove Lemma 6.10.

Proof of Lemma 6.10. Using the notation from Lemma 6.13 we define ε0 := min{ε1, (U/9)1/u} and

mε := ⌊Uε−u⌋. Now, we fix a n ≥ 1 and a 0 < ε ≤ ε0. Since mε ≥ 9, Lemma 6.14 yields for

Mε := ⌈2mε/8⌉ ≥ 3 binary strings ω(0), ω(1), . . . , ω(Mε) ∈ {0, 1}mε with large distances. If we define

fj := fω(j) then Pj := Pfj for j = 0, 1, . . . ,Mε satisfy the assumptions of Lemma 6.10 according to

Lemma 6.13. It remains to prove the Statements (i)–(iii). Due to the definition of Mε, mε and mε ≥ 9

we get 8
9Uε−u ≤ mε ≤ Uε−u and 2

U
9
ε−u ≤ 2mε/8 ≤ Mε ≤ 2mε/4 ≤ 2

U
3
ε−u

and (i) is satisfied for C2 :=
U
9 .

Statement (ii) is a consequence of the large distance between the binary strings and (29). Lemma 6.12,

(28) and mε ≥ 8
9Uε−u yield

1

Mε

Mε
∑

j=1

K(Pn
fj , P

n
f0) =

n

2σ̄2Mε

Mε
∑

j=1

‖fj − f0‖2L2(ν)
≤ 16Cγ

σ̄2
nεm−v

ε = C3nε
1+uv

where C3 :=
16Cγ9v

σ̄2(8U)v
. Combining Theorem 6.11 and (i) yields (iii) for C1 :=

3C3
C2 log(2)

.

Now, the proof of Theorem 3.2 remains an application of Lemma 6.10 and the general reduction

scheme from Tsybakov [36, Section 2.2].

Proof of Theorem 3.2. Let D 7→ fD,λ be a (measurable) learning method. Furthermore, we use the

notation of Lemma 6.10, set r := max{α,β}−γ
max{α,β}+p , and fix τ > 0 and n ≥ 1 with εn := τ

(

1
n

)r ≤ ε0. It remains

to show that there is a distribution P which is difficult to learn for the considered learning method.

Lemma 6.10, for ε = εn, provides possible candidates P0, P1, . . . , PMn each satisfying the requirements

of Theorem 3.2. Next, we estimate the left hand side of the inequality (iii) of Lemma 6.10. To this

end, we define the measurable function Ψ : (X × Y )n → {0, 1, . . . ,Mn},

Ψ(D) := argmin
j=0,1,...,Mn

‖[fD]ν − fj‖γ .

For j ∈ {0, 1, . . . ,Mn} and D ∈ (X × Y )n with Ψ(D) 6= j we have

2
√
εn ≤ ‖f∗

PΨ(D)
− f∗

Pj
‖γ ≤ ‖f∗

PΨ(D)
− [fD]ν‖γ + ‖[fD]ν − f∗

Pj
‖γ ≤ 2‖[fD]ν − f∗

Pj
‖γ

and hence Pn
j (D : Ψ(D) 6= j) ≤ Pn

j (D : ‖[fD]ν − f∗
Pj
‖2γ ≥ εn). According to (iii) of Lemma 6.10 there

is P ∈ {P0, . . . , PMn} with

Pn
(

D : ‖[fD]ν − f∗
Pj
‖2γ ≥ τn−r

)

≥
√
Mn√

Mn + 1

(

1− C1τ
1/r − 1

2 log(Mn)

)

.

Since Mn → ∞ for n → ∞ we can choose n sufficient large such that the right hand side is bounded

from below by 1− 2C1τ
1/r.
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A. Auxiliary Results and Concentration Inequalities

A.1 Lemma For λ > 0 and 0 ≤ α ≤ 1 we consider the function fλ,α : [0,∞) → R, fλ,α(t) := tα

λ+t .

In the case α = 0 this function is strict monotonically decreasing and in the case of α = 1 strict

monotonically increasing. Furthermore, the supremum of fλ,α satisfied

1

2
λα−1 ≤ sup

t≥0
fλ,α(t) ≤ λα−1,

where we use 00 := 1. In the case of α < 1 the function fλ,α attain its supremum at t∗ := λα
1−α .

Proof. This could be easily proved, using the derivative of fλ,α.

The following Bernstein type inequality for Hilbert space valued random variables is due to [26].

However we use a version from [4, Proposition 2].

A.2 Theorem (Bernstein’s Inequality) Let (Ω,B, P ) be a probability space, H be a separable Hilbert

space and ξ : Ω → H be a random variable with

EP‖ξ‖mH ≤ 1

2
m!σ2Lm−2

for all m ≥ 2. Then for all τ ≥ 1 and n ≥ 1 we have

Pn

(

(ωi)
n
i=1 ∈ Ωn :

∥

∥

∥

1

n

n
∑

i=1

ξ(ωi)− EP ξ
∥

∥

∥

2

H
≥ 32τ2

(

σ2

n
+

L2

n2

))

≤ 2e−τ .

Proof. This is a direct consequence of [4, Proposition 2] with η = 2e−τ and

EP ‖ξ − EP ξ‖mH ≤ 2m−1(EP‖ξ‖mH + ‖EP ξ‖mH) ≤ 2mEP‖ξ‖mH .

Note that we consider the squared norm and hence additionally apply (a + b)2 ≤ 2(a2 + b2) for

a, b ≥ 0.

The following Bernstein type inequality for Hilbert-Schmidt operator valued random variables is due

to [20]. However we use a version from [16, Lemma 26], see also [35] for an introduction to this topic.

A.3 Theorem Let (Ω,B, P ) be a probability space, H be a separable Hilbert space and ξ : Ω → L2(H)

be a random variable with values in the set of self-adjoint Hilbert-Schmidt operators. Furthermore, we

assume that the operator norm is P -a.s. bounded, i.e. ‖ξ‖ ≤ B P -a.s. and that there is a self-adjoint

positive semi-definite trance class operator V with EP (ξ
2) 4 V , i.e. V −EP (ξ

2) is positive semi-definite.

Then for all τ ≥ 1 and n ≥ 1 we have for g(V ) := log
(2e tr(V )

‖V ‖
)

Pn

(

(ωi)
n
i=1 ∈ Ωn :

∥

∥

∥

1

n

n
∑

i=1

ξ(ωi)− EP ξ
∥

∥

∥
≥

(

4τBg(V )

3n
+

√

2τ‖V ‖ g(V )

n

))

≤ 2e−τ .

Proof. This is a direct consequence of [16, Lemma 26] with δ = 2e−τ . Furthermore, we used ‖ξ−EP ξ‖ ≤
2‖ξ‖, EP (ξ − EP ξ)

2 4 EP (ξ
2), and log(c/δ) ≤ τ log(ec/2) for c ≥ 2.
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