# Martin boundary theory on weighted fractals



## **Motivation**

- aim define the Laplacian on weighted fractals
- reasonweighted fractals exist but the previous work on Martinboundaries covers only unweighted fractals
- method study behavior of harmonic functions
- **problem** the transition probability is homogeneously defined which leads only to the unweighted case (as in figure 1)
- idea modify the transition probability, such that it harmonizes with



# **University of Stuttgart**

**Department of Mathematics** 

Institute of Stochastics and Applications Pfaffenwaldring 57, D-70569 Stuttgart, Germany stefan.kohl@mathematik.uni-stuttgart.de

### the weighted case - results

Every  $i \in A$  respectively  $S_i$  gets a probability  $p_i \in (0, 1)$  with  $\sum_{i=1}^{N} p_i = 1$ . We get a mass distribution *m* with

 $m(w) = m(w_1 w_2 \dots w_n) = p_{w_1} p_{w_2} \cdots p_{w_n}$  for  $w = w_1 \dots w_n \in \mathcal{W}$ .

m(w) can be understood as the probability getting from  $\emptyset$  to w, which is known as  $g(\emptyset, w)$ . This contradicts equation (1) and we have to redefine p. Consider the idea, that the probability of going from v to its child w should be equal to the quotient of the mass in w and the mass we start from, the mass of v. After scaling and some calculations we get:

### the weights



### Martin boundary theory - preliminaries

Consider an IFS  $\{S_1, \ldots, S_N\}$  :  $D \subseteq \mathbb{R}^n \to D$  satisfying the (OSC). Assume, the attractor  $K = \bigcup_{i=1}^N S_i(K)$  of the IFS is connected.

We consider the **alphabet**  $\mathcal{A} = \{1, \ldots, N\}$ , the **word space**  $\mathcal{W} := \bigcup_{n \ge 1} \mathcal{A}^n \cup \{\emptyset\}$  and denote the set of all infinite  $\mathcal{A}$ -valued sequences  $w_1 w_2 \ldots$  by  $\mathcal{W}^*$ .

*v*, *w* ∈ *W* are **equivalent** (noted by *v* ~ *w*), if and only if |v| = |w|, *S<sub>v</sub>*(*K*) ∩ *S<sub>w</sub>*(*K*) ≠ Ø and *v*<sup>-</sup> ≠ *w*<sup>-</sup>. Set *R*(*w*) := #{*v* ∈ *W* : *v* ~ *w*}.

$$p(v, w) := \begin{cases} \frac{m(w)}{\sum_{\widehat{v} \sim v} m(\widehat{v})} & \text{if } w = \widehat{v}i \text{ with } \widehat{v} \sim v \text{ and } i \in \mathcal{A}, \\ 0 & \text{else.} \end{cases}$$

It then holds, that  $p(v, w) = p(\hat{v}, w)$  for  $\hat{v} \sim v$ .

Theorem 1 (K. 2018) For all  $w \in W$  it holds, that  $g(\emptyset, w) = m(w)$ .

The calculation of g(v, w) seems to be very hard, but there is a hidden structure, which we can reveal. For this define the function  $q : W \times W \rightarrow [0, 1]$  by

$$q(v, w) := \begin{cases} \frac{g(v, w)}{m(w)} \sum_{\widehat{v} \sim v} m(\widehat{v}) & \text{if } v \neq w, \\ 1 & \text{if } v = w. \end{cases}$$

Lemma 2 (K. 2018)

Let  $v, w \in W$  and  $i, j \in A$ . The function q fulfills then the recursive property

$$q(v, wi) = \begin{cases} 1 & \text{if } w \sim v, \\ \frac{\sum_{\widehat{w} \sim w} q(v, \widehat{w}) m(\widehat{w})}{\sum_{\widehat{w} \sim w} m(\widehat{w})} & \text{if } w \not\sim v. \end{cases}$$

#### Theorem 3 (K. 2018)

Let  $v, w, \widehat{w} \in W$  and  $\widehat{w} \sim w$ . If  $w^- \sim (\widehat{w})^-$  holds, then  $q(v, w) = q(v, \widehat{w})$  follows.

#### Theorem 4 (K. 2018)

Let  $p(\cdot, \cdot)$  be a transition probability on  $\mathcal{W}$ , such that

$$\mathcal{O}(w, \widetilde{w}i) \mathrel{\mathop:}= rac{1}{R(w)N} \qquad ext{for } \widetilde{w} \sim w, i \in \mathcal{A}$$

This defines a Markov chain  $(X_n)_{n\geq 0}$  on  $\mathcal{W}$ . The associated Markov operator P is defined by

$$(Pf)(v) := \sum_{w \in \mathcal{W}} p(v, w) f(w)$$

and we call a function f harmonic, if Pf = f.

The *n*-step transition probability from *v* to *w* is denoted by  $p_n(v, w)$  with  $p_0(v, w) = \delta_v(w)$ . Using this, we define the **Green function**  $g(v, w) : \mathcal{W} \times \mathcal{W} \to \mathbb{R}$  by

$$g(\mathbf{v},\mathbf{w}) := \sum_{n=0}^{\infty} p_n(\mathbf{v},\mathbf{w})$$

where

$$g(\emptyset, w) = N^{-|w|}$$
 for  $w \in \mathcal{W}$  (1)

holds. The Martin kernel  $k(v, w) : W \times W \rightarrow \mathbb{R}$  is defined by

$$k(v, w) := rac{g(v, w)}{g(\emptyset, w)}$$

and based on this we define the Martin metric  $\rho_M$  on  $\mathcal{W}$  by

$$\rho_{M}(v,w) := \left| 2^{-|v|} - 2^{-|w|} \right| + \sum_{z \in \mathcal{W}} (2N)^{-|z|} |k(z,v) - k(z,w)|$$

If for all  $w \in \mathcal{W}$  holds either

$$m(w) = m(\widetilde{w}) \quad \forall \widetilde{w} \sim w \qquad or \qquad w^- \sim (\widetilde{w})^- \quad \forall \widetilde{w} \sim w$$

then

$$q(v, wi) = rac{1}{R(w)} \sum_{\widetilde{w} \sim w} q(v, \widetilde{w})$$

holds for all  $v \in W$  with  $w \not\sim v$ . In particular is q **independent** from m.

#### Lemma 5 (K. 2018)

Let  $v, w, \widetilde{w} \in W$  with  $\widetilde{w} \sim w$ . If  $w^- \sim (\widetilde{w})^-$  and  $w \not\sim v$  holds, then  $k(v, w) = k(v, \widetilde{w})$  holds.

#### Theorem 6 (K. 2018)

If the homogeneous Martin kernel  $k_{hom}$  can be computed and theorem 4 holds, then it follows, that for  $v, w \in W$  the Martin kernel can be calculated by:

$$k(v, w) = \begin{cases} k_{hom}(v, w) \frac{R(v) \cdot N^{-|v|}}{\sum_{\widehat{v} \sim v} m(\widehat{v})} & \text{for } v \neq w, \\ \frac{1}{m(v)} & \text{for } v = w. \end{cases}$$

Thus we can calculate the Martin kernel in the weighted case.

### Open questions and problems

• Under which conditions can theorem 6 be generalized?

for  $v, w \in \mathcal{W}$ .

The Martin space  $M = \overline{W}$  is the  $\rho_M$ -completion of W and the Martin boundary  $\partial M$  is defined by  $\partial M = M \setminus W$ . Further  $(M, \rho_M)$  is a compact metric space, so that for fixed  $v \in W$  every function  $w \mapsto k(v, w)$  has an extension to a continuous function on M, denoted by  $\xi \mapsto k(v, \xi), \xi \in M$ .

In [1] Denker and Sato studied the case, that the IFS generates the (N-1)-dimensional Sierpiński gasket. They proved:

 ${\pmb K}\cong {\mathcal W}^\star/_\sim\cong {\pmb M}$ 

For this, they calculated the Martin kernel k in an explicit form.

With further assumptions on *p* this holds for all IFS satisfying the OSC (proved in [3] using hyperbolic boundaries).

Por which fractal/IFS (besides the Sierpiński gasket) are the preconditions from theorem 6 satisfied?

### References

#### [1] Manfred Denker and Hiroshi Sato.

Sierpiński Gasket as a Martin Boundary I: Martin Kernels. *Potential Analysis*, 14(3):211–232, May 2001.

#### [2] Manfred Denker and Hiroshi Sato.

Reflections on Harmonic Analysis of the Sierpiński Gasket. *Mathematische Nachrichten*, 241(1):32–55, July 2002.

#### [3] Ka-Sing Lau and Xiang-Yang Wang.

Denker–sato type markov chains on self-similar sets. *Mathematische Zeitschrift*, 280(1):401–420, Jun 2015.

 $Z \subseteq VV$