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Abstract
We study generalization properties of kernel regularized least
squares regression based on a partitioning approach. We show
that optimal rates of convergence are preserved if the num-
ber of local sets grows sufficiently slowly with the sample size.
Moreover, the partitioning approach can be efficiently combined
with local Nyström subsampling, improving computational cost
twofold.

Learning Setting
• minimize expected risk

E(f) =
∫
X×R

(f(x)− y)2dρ(x, y)

over reproducing kernel Hilbert space H (RKHS) with
bounded kernel K

• note: minimizer over all measurable f : X −→ R is regres-
sion function

fρ = E[Y |X] ∈ L2(X , ρX)

The Partitioning Approach
• {X1, ...,Xm} partition of X

• on Xj define local reproducing kernel Kj with RKHSHj

• weighted global kernel: K(x, x′) =
∑m
j=1 pj Kj(x, x

′)

• global RKHS is direct sum: H :=
⊕m

j=1 Ĥj

Defining the Estimator
• training data D = {(x1, y1), ..., (xn, yn)} are split according

to partition D1, ...,Dm

• on each set Xj compute a local estimator using a local ker-
nel by solving

f̂λj = ArgMin
f∈Hj

1

|Dj |
∑

(x,y)∈Dj

(f(x)− y)2 + λ ||f ||2Hj

• global estimator f̂λ :=
∑m
j=1 f̂

λ
j ∈ H

Assumptions
Under which conditions is f̂λ minimax optimal ?
The local covariances are

Tj = E[Kj(X, ·)⊗Kj(X, ·)] ,

giving the global one T =
⊕m

j=1 Tj .

• Smoothness: ||T−rfρ||H <∞, 0 < r ≤ 1/2.

• Goodness of Partition: For 0 < γ ≤ 1 assume

Trace
[
(T + λ)−1T

]
. λ−γ .

Localization allows optimality:
Let |Dj | = b nmc. Then, with the choices

λn '
(
1

n

) 1
2r+1+γ

mn . nα , α ≤ 2r

2r + 1 + γ

the excess risk satisfies

E
[
E(f̂λD)− E(fρ)

]
.

(
1

n

) 2r+1
2r+1+γ

.

Nyström Subsampling
Plain Nyström: Sample uniformly at random l ≤ n points
x̃1, ..., x̃l from training data and seek for an estimator in a reduced
space

Hl = { f : f =
l∑

j=1

αjK(x̃j , ·) , α ∈ Rl }

by solving

min
f∈Hl

1

n

n∑
j=1

(f(xj)− yj)2 + λ||f ||2Hl .

Aim: Apply Nyström locally!

Combining Localization and Subsampling
If the number l of subsampled points on each local set satisfies

ln ∼ nβ , β ≥ 1 + γ

2r + 1 + γ

and if the number of local sets satisfies

mn . nα , α ≤ 2r

2r + 1 + γ
,

then the choice for the regularization parameter λn given above
guarantees the error bound

E
[
E(f̂λnD )− E(fρ)

]
.

(
1

n

) 2r+1
2r+1+γ

.

This bound is known to be minimax optimal! (Caponnetto and
E. De Vito 2006, Blanchard and M. 2017)

Computational Cost

1. KRLS O(n3)
2. localized KRLS O

(
( nm )3

)
, 1 ≤ m ≤ nα

3. Nyström O(nl2 + l3), nβ ≤ l ≤ n
4. local Nys. O( nm l

2 + l3), nβ ≤ l ≤ n
m

5. distributed KRLS O
(
( nm )3

)
, 1 ≤ m ≤ nα

Comparison of time complexity for different large scale ap-
proaches: 1. Kernel Regularized Least Squares (KRLS), 2. KRLS
combined with Partitioning, 3. Subsampling, 4. Subsampling
combined with Partitioning, 5. Distributed KRLS onmmachines


