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Least Squares Learning

Approximately solve

min
w∈H

L(w), L(w) =
1

2
E[(Y − 〈w,X〉)2] .

H: real separable Hilbert space

Define
Σ = E[X⊗ X] , h = E[XY] .

Optimal solution w∗ satisfies normal equation:

Σw∗ = h .

Mini-Batch SGD Recursion
Let t = 0, ..., T , w0 = 0 and

wt+1 = wt −
γt

b

bt∑
i=b(t−1)+1

(〈wt, xji〉− yji)xji ,

j1, ..., jbT ∼ i.i.d Unif[n].

Tail AveSGD: Tail-length L = 1, ..., T w̄L :=
1
L

∑T
t=T−L+1wt

Unif AveSGD: L = T

Why Tail-Averaging ? (Part I)

StoppingTime

MS
E

ave, γ=const.
γ=t^0.5
γ=t^0.7
tail ave, γ=const.
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too small step sizes ⇒ slow convergence
larger step sizes ⇒ improved convergence + noisy trajectories
Unif AveSGD: allows large/ constant step sizes since it reduces the
variance of SGD
Tail AveSGD: sufficiently “long” tail preserve this benefit

Assumption I: Regularity
For some r ≥ 0 we assume w∗ ∈ Ran(Σr).
Note: Ran(Σ0) = H and Ran(Σr) ⊆ H

Main Theorem: Excess Risk of Tail AveSGD

Define effective dimension

N(1/γL) := Trace[(Σ+ 1/(γL))−1Σ] .

Let 1 ≤ L ≤ T . Assume γκ2 < 1/4. Then

E[L(w̄L) − L(w∗)] . ApproxL(Σ,w∗) +
N(1/γL)

n
+
γ Trace[Σν]

b(γL)1−ν

for n sufficiently large.

Saturation
Let ApproxL(Σ,w∗) denote the Approximation Error.

Unif AveSGD: ApproxT(Σ,w∗) ≈ (1/γT)2min(r,1/2)+1

Tail AveSGD: ApproxL(Σ,w∗) ≈ (1/γL)2r+1

Why Tail-Averaging ? (Part II)

Unif AveSGD Tail AveSGD

Assumption II: Capacity
For some ν ∈ (0, 1] we assume N(1/γL) . (γL)ν.

Corollary: Learning Rate

The excess risk of the (tail)-averaged SGD iterate satisfies

E[L(w̄L) − L(w∗)] . n
− 2r+1
2r+1+ν

for each of the following choices:

one pass: bn ' 1, Ln ' n, γn ' n− 2r+ν
2r+1+ν

one pass: bn ' n
2r+ν
2r+1+ν, Ln ' n

1
2r+1+ν, γn ' 1

O
n

1
2r+1+ν

 passes: bn ' n, Ln ' n
1

2r+1+ν, γn ' 1.

Experiment: Saturation
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Excess risk as a function of regularity r with uniform and tail
averaging.

Unif AveSGD: starts to lag behind its tail-averaged counterpart for
larger values of r exceeding 1/2, flattening out.

Tail AveSGD: continues to improve for large values of r, confirming that
this algorithm can indeed massively benefit from favorable structural
properties of the data.

Experiment: Single Pass Performance
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Single pass performance as a function of the stepsize γ and the
minibatch-size b.

Performance: remains largely constant as γ · b remains constant for
both algorithms, until a critical threshold stepsize is reached.

Tail AveSGD: permits the use of larger minibatch sizes, allowing for
more efficient parallelization.
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