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Introduction

Given a bounded linear operator T : E → F the nth dyadic entropy number of T is
defined by

en(T ) := inf{ε > 0 : ∃ x1, . . . , x2n−1 ∈ E such that TBE ⊂
2n−1⋃
k=1

(xk + εBF )} .

It is a simple fact that T is compact if and only if (en(T )) tends to zero. The
rate of decay can be interpreted as a ’degree of compactness’. Entropy numbers are
considered, for example, because they are known to be very helpful for eigenvalue
estimates due to the inequality

|λn(T )| ≤
√
2 en(T ) .

Here the eigenvalues λn(T ) of a operator T : E → E are ordered by non-increasing
absolute values and counted according to their algebraic multiplicities.
Let T : E → F be an arbitrary operator and I : F → C((BF ′ , ω∗)) be the canonical
injection then we always have

en(IT ) ≤ en(T ) ≤ 2en(IT ) .

Therefore if we are interested in the asymptotic behaviour of entropy numbers, we
can reduce our considerations to C(K)-valued operators. Note that without loss of
generality we always may assume that (BF ′ , ω∗) is metrizable, if we estimate entropy
numbers of compact operators asymptotically. Therefore, let us additionally suppose
that K is a compact metric space. One may ask whether the rate of decay of the
sequence (en(T : E → C(K)) is influenced by that of (εn(K)). The answer is positive
if we additionally have some smoothness assumptions on T , say 1-Hölder-continuity.
Now the general problem we treat can be stated as:

How are the entropy numbers of an arbitrary 1-Hölder-continuous operator T : E →
C(K) influenced by the entropy numbers of K?

A quick answer can be given with the help of a well-known inequality due to Carl (cf.
Theorem 1.4 and the introduction of Chapter 3):

sup
k≤n

k1/p ek(T ) ≤ cp cK ‖T‖1 sup
k≤n

k1/p εk(K) . (1)
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Here cp denotes a constant only depending on p ∈ (0,∞) and cK := 1
min{1,ε1(K)} .

Hence for positive and decreasing sequences (an) with an ∼ a2n, e.g. an = n−1/p, we
obtain that εn(K) � an implies

en(T ) ≤ c ‖T‖1 an

for all n ≥ 1 and some constant c > 0. However, it is known by Carl, Heinrich and
Kühn (cf. [9, Th.1], [12, Th. 5.10.1] or [10, Th. 2.3]) that if E is a Hilbert space or
if at least the dual E ′ is of type q, then εn(K) � n−1/p implies

en(T ) � n−(1−1/q)−1/p . (2)

Therefore, given a Banach space E, several questions arise:

• When does inequality (1) yield asymptotically optimal results for some 1-Hölder-
continuous operator T : E → C(K)?

We will see in Chapter 5 that, roughly speaking, the inequality produces asymp-
totically optimal results if and only if E is not B-convex.

• Are there other inequalities similar to (1) which take into account the local struc-
ture of E, e.g. in terms of type and cotype, and moreover cover the results of
Carl, Heinrich and Kühn and give new estimates if (εn(K)) does not asymptot-
ically behave like n−1/p ?

This is our major aim. We prove several types of such inequalities in Chapter
3.

• Provided we find such inequalities, are the arising estimates asymptotically op-
timal for some 1-Hölder-continuous operator T : E → C(K)?

The answer is definitely yes, as will be shown in Chapter 5.

• What local structure must E have, if the estimate of Carl, Heinrich and Kühn
holds for E? What are necessary conditions on E, if we have inequalities of the
type described in the second question?

These questions are also considered in Chapter 5. For instance we will show
that for 1 < q < 2 implication (2) just characterizes B-convex Banach spaces of
weak cotype q′.

As mentioned above, the estimate (1) is based on a general inequality between entropy
numbers and approximation quantities due to Carl. Cases are also known in which
an inverse form of this inequality holds. As an application of our results on 1-Hölder-
continuous operators we present such an inverse inequality for operators T : E → F
provided that one of the involved spaces is a Hilbert space. The idea of our approach
is essentially based on the observation that there is a canonical metric on BF ′ induced
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by T ′ such that the operator IT is 1-Hölder-continuous with respect to this metric.
In other words:

Every compact operator shares its entropy numbers with a suitable 1-Hölder-con-
tinuous operator.

This latter fact was implicitly used by Carl and Edmunds in [8]. That also allows
to make some remarks on the duality problem of entropy numbers at the end of this
work.
Several other applications of the cited result of Carl, Heinrich and Kühn are known,
e.g. entropy estimates for integral operators with so-called Hölder-continuous kernels
or for operators defined by abstract kernels. Moreover, given a precompact subset A
of a Banach space E we can use (1) and (2) to estimate the entropy numbers of the
absolutely convex hull coA by those of A, as worked out by Carl, Kyrezi and Pajor in
[7] and [10]. More precisely, we obtain by (1) that

εn(A) � an implies en(coA) � an (3)

for all positive, decreasing sequences (an) with an ∼ a2n. Furthermore, if E is of type
q, Carl, Kyrezi and Pajor proved with the help of (2) that

εn(A) � n−1/p implies en(coA) � n−1/p−(1−1/q) (4)

They also showed for type q spaces that εn(A) � (log(n+ 1))−1/p implies

en(coA) �
{ n−(1−1/q) (log(n+ 1))(1−1/q)−1/p if p < q′

n−1/p if p > q′ ,
(5)

where 1/q′ := 1−1/q. However several questions similar to our program for 1-Hölder-
continuous operators are to be solved:

• What happens if we know that εn(A) only essentially decreases like in one of the
above cases, e.g. if we have εn(A) � n−1/p (log(n+ 1))γ for some γ 6= 0?

We will consider this question in Chapter 4. More precisely we will answer the
following question raised by Ball and Pajor:

Are there inequalities between εn(A) and en(coA) which both cover the above
implications and give new results?

• When are the new and the results mentioned above asymptotically optimal for
some subset A of E?

Roughly speaking, it turns out that (3) is asymptotically optimal for some subset
A if and only if E is not B-convex. The other implications as well as the new
ones are shown to be asymptotically optimal whenever E has no better (weak)
type than q. Of course we cannot expect more.
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• What are necessary conditions on E such that the implications (4) and (5) hold?

We show that (4) is equivalent to E being of weak type q for q ∈ (1, 2). Moreover,
if (5) holds in E then the space must be at least of all type q − ε.

We point out that entropy numbers of convex sets are very important for some stochas-
tic questions. For instance, universal Donsker classes can be investigated by entropy
conditions. This was the reason for Dudley in [16] to prove a weaker form of (4).

This work is organized as follows: In Chapter 1 we introduce all the necessary notions
and prove some preliminary facts. We start with basic notations for spaces, operators
and sequences. Then we present the entropy numbers and some other approximation
quantities. Next we introduce some basic concepts from the local theory of Banach
spaces. We then consider the socalled duality problem of entropy numbers and finally
we present entropy estimates for finite rank operators acting between certain Banach
spaces.
Chapter 2 is devoted to a decomposition technique for 1-Hölder-continuous operators
which plays a fundamental role for our main theorems.
These results concern entropy estimates for 1-Hölder-continuous operators and are
presented and proved in Chapter 3. Some consequences and further generalizations
are also discussed there.
In Chapter 4 we apply these results to the problem of estimating entropy numbers
of convex hulls. We also show that the proven results are asymptotically optimal.
Moreover, we characterize some local properties of Banach spaces by entropy estimates
for convex hulls and discuss an interesting phenomenon which occurs in B-convex
Banach spaces. Finally we give some additional remarks on generalizations and open
questions.
The fifth and last chapter is devoted to three topics: Firstly we investigate local
properties of Banach spaces in terms of entropy estimates for 1-Hölder-continuous
operators. We then show that our results of chapter 3 are asymptotically optimal.
Although both of these questions could also be considered in Chapter 3 we decided
to treat the ’dual case’ first since this proceeding avoids some technical problems.
Finally we present another application of a result of chapter 3: We show how Carl’s
inequality can be inverted provided that one of the involved spaces is a Hilbert space.

Parts of this dissertation, in particular the main theorems of Chapter 3 and 4 will be
published in [37] by the Journal of Approximation Theory.

I would like to thank my thesis advisor Prof. B. Carl for his encouragement and
support. For interesting discussions on entropy estimates for convex hulls I also thank
Prof. W. Linde. I owe many thanks to C. H. Müller, M. St. (Oxon), and Dipl. Math.
A. Westerhoff who both corrected this text. Finally I am grateful to my wife Wiebke
and our little daugther Joke who gave me strength to finish this work.
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Einleitung

Für einen stetigen, linearen Operator T : E → F ist die n-te dyadische Entropiezahl
durch

en(T ) := inf{ε > 0 : ∃ x1, . . . , x2n−1 ∈ E mit TBE ⊂
2n−1⋃
k=1

(xk + εBF )}

definiert. Wie sich leicht überprüfen läßt, konvergiert die Folge der Entropiezahlen
von T genau dann gegen 0, wenn T kompakt ist. Die Konvergenzgeschwindigkeit
kann in diesem Fall als ein ,,Grad der Kompaktheit“ angesehen werden. Mit Hilfe
von Entropiezahlen lassen sich beispielsweise Eigenwerte durch die Ungleichung

|λn(T )| ≤
√
2 en(T )

abschätzen, wobei hier die Eigenwerte λn(T ) eines Operators T : E → E gemäß ihrer
algebraischen Vielfachheit gezählt und bezüglich ihres absoluten Wertes sortiert sind.
Bezeichnet I : F → C((BF ′ , ω∗)) die kanonische Einbettung, so gilt für jeden Operator
T : E → F die Ungleichung

en(IT ) ≤ en(T ) ≤ 2en(IT ) .

Daher genügt es, C(K)-wertige Operatoren zu untersuchen, sofern wir ,,nur“ am
asymptotischen Verhalten von Entropiezahlen interessiert sind. Betrachten wir ferner
nur kompakte Operatoren - diese sind für Entropiezahlen die einzigen interessanten - ,
so können wir ohne Beschränkung der Allgemeinheit zudem annehmen, daß (BF ′ , ω∗)
metrisierbar ist. Daher sei im folgenden K immer ein kompakter, metrischer Raum.
Nun kann man sich fragen, ob und inwieweit die Entropiezahlen von T : E → C(K)
durch die von K beeinflußt werden. Falls wir zusätzlich wissen, daß T gewisse
,,Glattheitseigenschaften“ besitzt, beispielsweise 1-Hölder-Stetigkeit, so gibt es in der
Tat solche Abhängigkeiten. Das Problem, mit dem wir uns beschäftigen werden, kann
daher in allgemeiner Form wie folgt formuliert werden:

Wie werden die Entropiezahlen von 1-Hölder-stetigen Operatoren T : E → C(K)
durch die Entropiezahlen von K beeinflußt?

Mit Hilfe einer bekannten Ungleichung von Carl (vgl. Theorem 1.4 und die Einleitung
von Kapitel 3) kann zunächst die folgende ad-hoc-Abschätzung gegeben werden:

sup
k≤n

k1/p ek(T ) ≤ cp cK ‖T‖1 sup
k≤n

k1/p εk(K) . (1)
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Die Konstante cp hängt hierbei nur von p ∈ (0,∞) ab. Zudem ist cK := 1
min{1,ε1(K)} .

Betrachten wir nun eine positive, monoton fallende Nullfolge (an) mit der Regu-
laritätsbedingung an ∼ a2n, also z.B. an = n−1/p, erhalten wir daher für eine Kon-
stante c > 0 und alle n ≥ 1:

en(T ) ≤ c ‖T‖1 an ,

sofern wir εn(K) � an wissen. Dies ist in vielen Fällen jedoch nicht scharf. So
haben Carl, Heinrich und Kühn (vgl. [9, Th.1], [12, Th. 5.10.1] und [10, Th. 2.3])
beispielsweise gezeigt, daß wir für Hilberträume E, oder allgemeiner für Banachräume
E, deren Dualraum vom Typ q ist, immer

en(T ) � n−(1−1/q)−1/p (2)

erhalten, sofern εn(K) � n−1/p bekannt ist. Für einen vorgegebenen Banachraum E
stellen sich daher die folgenden Fragen:

• Wann ergeben sich durch Ungleichung (1) asymptotisch optimale Abschätzungen
für die Entropiezahlen eines geeigneten 1-Hölder-stetigen Operators T : E →
C(K)?

Wir werden im Kapitel 5 zeigen, daß sich im wesentlichen nur für nicht B-
konvexe Räume asymptotisch optimale Abschätzungen ergeben.

• Gibt es zu (1) vergleichbare Ungleichungen, die auch die lokalen Eigenschaften
des Raumes E berücksichtigen und aus denen sich sowohl das oben zitierte Re-
sultat von Carl, Heinrich und Kühn als auch bisher unbekannte Abschätzungen
ableiten lassen?

Der Beweis solcher Ungleichungen ist unser Hauptziel. Im dritten Kapitel wer-
den wir drei Klassen von ihnen zeigen.

• Lassen sich aus den dann bewiesenen Ungleichungen asymptotisch optimale Ab-
schätzungen herleiten?

Wir werden im fünften Kapitel Operatoren T : E → C(K) konstruieren, für die
sich die Abschätzungen als asymptotisch optimal herausstellen werden.

• Was sind notwendige Bedingungen an E, um die Abschätzung (2), bzw. die eben
beschriebenen Ungleichungen erhalten zu können?

Dieser Frage werden wir ebenfalls im fünften Kapitel nachgehen. Wir werden
dort beispielsweise zeigen, daß für 1 < q < 2 die Abschätzung (2) gerade B-
konvexe Räume vom schwachen Typ q′ charakterisiert.

Wie bereits erwähnt, ist die Ungleichung (1) eine direkte Folge einer allgemeineren
Ungleichung zwischen Entropie- und Approximationszahlen. Ferner sind auch Situa-
tionen bekannt, in denen eine umgekehrte Ungleichung dieser Art gilt. Es wird sich
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nun in Kapitel 5 zeigen, daß wir mit Hilfe unserer oben beschriebenen Abschätzungen
eine weitere solche umgekehrte Ungleichung für Operatoren T : E → F beweisen
können, sofern einer der beteiligten Räume ein Hilbertraum ist. Die Idee unseres Be-
weises basiert dabei im wesentlichen auf der Beobachtung, daß mit Hilfe des dualen
Operators T ′ eine Metrik auf BF ′ konstruiert werden kann, bzgl. derer der Operator
IT 1-Hölder-stetig ist. Mit anderen Worten gilt:

Für jeden Operator gibt es einen 1-Hölder-stetigen Operator, dessen Entropiezahlen
mit denen des ersten asymptotisch übereinstimmen.

Dieses wurde implizit schon von Carl und Edmunds in [8] genutzt. Es ermöglicht uns
zudem ein paar einfache Bemerkungen zum Dualitätsproblem für Entropiezahlen.
Das oben zitierte Resultat von Carl, Heinrich und Kühn hat diverse Anwendungen.
Beispielsweise können mit ihm Integraloperatoren oder allgemeiner, Operatoren, die
mit Hilfe abstrakter Kerne definiert wurden, untersucht werden. Eine weitere Anwen-
dung der Abschätzungen (1) und (2) besteht in der Möglichkeit, für eine präkompakte
Menge A ⊂ E die Entropiezahlen der absolut konvexen Hülle coA durch die En-
tropiezahlen der Menge A abzuschätzen. Dieser Ansatz wurde von Carl, Kyrezi und
Pajor in [7] und [10] benutzt. Sie erhielten so mit Hilfe der Ungleichung (1) für alle
positiven, monoton fallenden Nullfolgen (an) mit an ∼ a2n, daß

en(coA) � an (3)

gilt, sofern εn(A) � an bekannt ist. Ist E sogar vom Typ q, so leiteten sie aus der
Abschätzung (2) ab, daß

en(coA) � n−1/p−(1−1/q) (4)

gilt, sofern εn(A) � n−1/p für A ⊂ E vorausgesetzt wird. Ferner zeigten Carl, Kyrezi
und Pajor für Räume E vom Typ q und Mengen A ⊂ E mit εn(A) � (log(n+1))−1/p,
daß

en(coA) �
{ n−(1−1/q) (log(n+ 1))(1−1/q)−1/p falls p < q′

n−1/p falls p > q′
(5)

gilt, wobei q′ durch 1/q′ = 1−1/q definiert ist. Damit ergeben sich analog zu unserem
Programm für 1-Hölder-stetige Operatoren die folgenden Fragen:

• Wie kann die Folge (en(coA)) abgeschätzt werden, wenn sich die Folge (εn(A))
nur im wesentlichen wie in einem der obigen Fälle verhält? Was passiert
beispielsweise im Falle von εn(A) � n−1/p (log(n+ 1))γ für ein γ 6= 0?

Dieser Frage werden wir im vierten Kapitel nachgehen. Genauer gesagt werden
wir dort sogar die folgende Frage von Ball und Pajor positiv beantworten:

Gibt es Ungleichungen zwischen εn(A) und en(coA), aus denen sich sowohl die
bekannten als auch neue Abschätzungen herleiten lassen?
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• Wann sind die auf diese Weise gewonnenen und die schon bekannten Ab-
schätzungen asymptotisch optimal?

Es stellt sich heraus, daß die Abschätzung (3) genau für nicht B-konvexe Ba-
nachräume asymptotisch optimal ist. Ferner sind sowohl die Abschätzungen (4)
und (5) als auch die neu hinzugewonnenen immer dann asymptotisch optimal,
wenn E keinen größeren Typ als q hat. Natürlich ist dies auch notwendig für
die Optimalität.

• Was sind notwendige Bedingungen an den Raum E, damit Abschätzungen wie
(4) und (5) überhaupt gelten können?

Wir werden zeigen, daß die Abschätzung (4) Räume E vom schwachen Typ q
charakterisiert. Gilt (5), so muß E zumindest vom Typ q− ε für alle ε > 0 sein.

Abschließend sei erwähnt, daß Entropiezahlen absolut konvexer Hüllen für stochasti-
sche Fragestellungen eine wichtige Rolle spielen, beispielsweise bei der Beschrei-
bung universeller Donsker-Klassen. Dies war der Grund für Dudley, in [16] eine
abgeschwächte Form von (4) zu beweisen.

Der Aufbau dieser Arbeit ist wie folgt: Im ersten Kapitel führen wir alle notwendi-
gen Begriffe und Sätze ein und beweisen einige, für das weitere Vorgehen nützliche
Aussagen. Zunächst beginnen wir dabei mit Notationen für bestimmte Räume,
Operatoren und Folgen. Sodann definieren wir Entropiezahlen und einige andere
Approximationsgrößen und stellen wohlbekannte Eigenschaften von ihnen zusam-
men. Anschließend führen wir wichtige Konzepte aus der lokalen Banachraum-
theorie ein. Danach beschäftigen wir uns mit dem sogenannten Dualitätsproblem
für Entropiezahlen und stellen schließlich einige Entropieabschätzungen für endlich-
dimensionale Operatoren zwischen bestimmten Banachräumen vor.
Das zweite Kapitel ist einer Zerlegungstechnik für 1-Hölder-stetige Operatoren gewid-
met, die eine fundamentale Rolle für unsere Hauptergebnisse spielt.
Diese Resultate über Entropieabschätzungen für 1-Hölder-stetige Operatoren werden
im dritten Kapitel vorgestellt und bewiesen. Zudem werden einige Folgerungen und
weitergehende Verallgemeinerungen, sowie offene Fragen diskutiert.
Im vierten Kapitel werden diese Ergebnisse benutzt, um Entropieabschätzungen für
absolut konvexe Hüllen zu beweisen. Zudem zeigen wir, daß die so erzielten Ergeb-
nisse praktisch immer asymptotisch optimal sind. Ferner charakterisieren wir einige
lokale Eigenschaften von Banachräumen durch Entropieabschätzungen für absolut
konvexe Hüllen und diskutieren diesbezüglich ein interessantes Phänomen, das in B-
konvexen Banachräumen auftritt. Abschließend stellen wir wieder weitergehende Ver-
allgemeinerungen und offene Fragen vor.
Das fünfte und letzte Kapitel widmet sich drei verschiedenen Themen: Zuerst unter-
suchen wir die lokale Strukur von Banachräumen mit Hilfe von Entropieabschätzungen
für 1-Hölder-stetige Operatoren. Sodann zeigen wir, daß die im dritten Kapitel erziel-
ten Resultate asymptotisch optimal sind. Diese beiden Problemstellungen hätten
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natürlich auch schon im dritten Kapitel behandelt werden können, wir entschieden
uns jedoch, zunächst den ,,dualen Fall“ zu betrachten, da auf diese Weise einige tech-
nische Probleme entfallen und die Idee klarer zum Vorschein kommt. Schließlich wen-
den wir ein Resultat aus dem dritten Kapitel an, um eine Umkehrung der Carl’schen
Ungleichung für den Fall zu zeigen, daß einer der beteiligten Räume ein Hilbertraum
ist.
Teile dieser Dissertation, insbesondere die Hauptresultate des dritten und vierten
Kapitels, werden in [37] durch das Journal of Approximation Theory veröffentlicht.

Ich möchte mich bei meinem Doktorvater Prof. B. Carl für seine Ermutigungen und
Unterstützung bedanken. Ferner bedanke ich mich bei Prof. W. Linde für interessante
Diskussionen über Entropiezahlen absolut konvexer Hüllen. Besonderen Dank schulde
ich C. H. Müller, M. St. (Oxon), und Dipl. Math. A. Westerhoff, die diese Arbeit
korrigierten und viele Unzulänglichkeiten meines Englischs verbesserten. Schließlich
danke ich meiner Frau Wiebke und unserer kleinen Tochter Joke, die mich immer
wieder in diese Welt zurückholten und mir so neue Kraft gaben.
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Chapter 1

Preliminaries

1.1 Basic notations

In this text E and F always denote some Banach spaces. Continuous, linear maps
between Banach spaces we always call operators and we usually denote them by T or
S. For the closed unit ball of some Banach space E we write BE. The dual space of E
is denoted by E ′. We write E =

1
F or E ↪→1 F , if the Banach space E is isometrically

isomorphic to F , resp. isometrically embedded into F .
Let A be an arbitrary set and 0 < p < ∞. Then `p(A) denotes the Banach space of
all p-summable families of real numbers (ξt)t∈A over A with norm

‖(ξt)‖p :=

(∑
t∈A

|ξt|p
)1/p

.

Analogously, we write `∞(A) for the Banach space of all bounded number families
(ξt)t∈A over A with norm

‖(ξt)‖∞ := sup
t∈A

|ξt| .

In the case of A = N we just write `p instead of `p(A). Moreover, `np denotes the n-
dimensional counterpart of `p. Given a real number p ∈ [1,∞] we always let p′ := p

p−1
,

i.e. 1
p′
= 1− 1

p
. For 1 ≤ p <∞ we then have `′p =

1
`p′ for example.

Let x = (xi) be a sequence of real numbers, then we denote the non-increasing re-
arrangement of x by (sn(x)). For 0 < p < ∞ and 0 < q ≤ ∞ the Lorentz sequence
space `p,q is defined by

`p,q := {x | (n1/p−1/qsn(x)) ∈ `q}

which is equipped with the quasi-norm ‖x‖p,q :=
∥∥(n1/p−1/qsn(x))

∥∥
`q
. Given a compact

metric space (K, d), we write C(K) for the space of all continuous functions f : K → R
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with the usual supremum norm

‖f‖∞ := sup
x∈K

|f(x)| .

For an operator T : E → C(K) the modulus of continuity ω(T, .) is defined by

ω(T, δ) := sup
x∈BE

sup
d(s,t)≤δ

|Tx(s)− Tx(t)| (δ > 0) .

An operator T : E → C(K) is called α-Hölder-continuous, 0 < α ≤ 1, if

|T |α := sup
δ>0

ω(T, δ)

δα
<∞ .

In this case we write ‖T‖α := max{‖T‖ , |T |α}. If (A, d) is a precompact metric space
and T : E → `∞(A) is an operator, we define α-Hölder-continuity of T and ‖T‖α
analogously. Finally for ϕ ∈ C(K) we let

supp ϕ := {t ∈ K : ϕ(t) 6= 0} .

Since we are interested in the asymptotic behaviour of sequences, it is reasonable to
make some conventions. For given sequences (an), (bn) we write an � bn, if there
exists a constant c > 0 such that an ≤ c bn for all n ≥ 1. Moreover, we write an ∼ bn,
if an � bn and bn � an. A function f : [0,∞) → (0,∞) is said to be σ-controlled,
0 ≤ σ <∞, if

a−σ f(t) ≤ f(a · t) ≤ aσ f(t)

holds for all a, t ≥ 1. Note that 0-controlled functions are constant on [1,∞) and
t→ tσ is σ-controlled. One easily checks that if f is σ-controlled and g is ρ -controlled
then fg is (σ + ρ)-controlled and 1/f is σ-controlled. Moreover, if additionally g is
monotone increasing with g(1) ≥ 1 then f ◦ g is (σρ)-controlled. Therefore we are
able to produce a lot of σ-controlled functions with the help of the following simple
but important example.

Example 1.1 Let c > 1 and g : [0,∞) → (0,∞) be defined by t 7→ log2(ct+ 1). Then g is
1
ln c -controlled.

To see this we let σ := (ln c)−1. Since ∂
∂a(ac

1−aσ) = c1−aσ(1 − aσ) ≤ 0 for all a ≥ 1 we
observe that ac1−aσ ≤ 1 for all a ≥ 1. Hence for a, t ≥ 1 we obtain

act = a(ct)1−aσ(ct)a
σ ≤ ac1−aσ(ct)a

σ ≤ (ct)a
σ
.

Therefore g is σ-controlled since for all a, t ≥ 1 we have

a−σg(t) ≤ g(at) = log2(act+ 1) ≤ log2((ct)
aσ + 1) ≤ log2((ct+ 1)a

σ
) = aσ g(t) .
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A positive null sequence (an) is said to be regular, if there is a constant c ≥ 1 such
that an ≤ c a2n and am ≤ c an for all 1 ≤ n ≤ m. Note, that in this case we always
have

an ≤ c2
(m
n

)log2 c
am

for all n ≤ m. With the help of σ-controlled functions we are able to construct regular
sequences as the following example shows:

Example 1.2 Let f be a σ-controlled function and 0 < p < ∞. Then the sequences

an := n−1/p f(log(n+ 1)) and bn := (log(n+ 1))−1/p f(log(log(n+ 1) + 1))

are regular.
To see this for the sequence (an) we first observe that an ≤ n−1/p (log(n + 1))σ f(1) → 0
for n → ∞. For n ≥ 1 we also have

an = n−1/p f(log(n+1)) ≤ 21/p (2n)−1/p

(
log(2n+ 1)

log(n+ 1)

)σ

f(log(2n+1)) ≤ 21/p+σa2n .

Moreover, there is a c > 0 such that
(
n
m

)1/p ( log(m+1)
log(n+1)

)σ
≤ c for all 1 ≤ n ≤ m. Hence we

obtain

am = m−1/p f(log(m+ 1)) ≤
( n

m

)1/p ( log(m+ 1)

log(n+ 1)

)σ

n−1/p f(log(n+ 1)) ≤ c an

for all 1 ≤ n ≤ m. The proof for the sequence (bn) is analogous.

Finally we give an example of a very slowly decreasing regular sequence:

Example 1.3 There exists a monotone decreasing regular sequence (an) with an ∼ a2n

For the construction of such a sequence we first define a sequence (bn) inductively by b1 := 1
and bn+1 := 2bn . Now we let

an := 2−k iff bk ≤ n < bk+1 .

Of course (an) is a monotone decreasing sequence with an → 0. Now for given n ∈ N there
is a k ∈ N with bk ≤ n < bk+1. We then have bk+1 ≤ 2n < bk+2 and therefore

an = 2−k = 2 · 2−(k+1) = 2 a2n .

Moreover, since 2n ≤ 2n we also have an = 2a2n ≤ 2a2n, i.e. (an) is regular.

1.2 Entropy numbers and some s-numbers

Let (K, d) be a metric space and B(x, ε) := {y ∈ K : d(x, y) ≤ ε} be the closed
ball with radius ε and centre x. Then for a bounded subset M ⊂ K the nth entropy
number of M is defined by

εn(M) := inf{ε > 0 : ∃ x1, . . . , xq ∈ K, q ≤ n such that M ⊂
q⋃

k=1

B(xk, ε)} .
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The nth dyadic entropy number of M is

en(M) := ε2n−1(M) .

Given an operator T : E → F the nth dyadic entropy number of T is defined by

en(T ) := en(T (BE)) .

Moreover, we are interested in the following numbers associated with T :

• the nth approximation number of T , defined by

an(T ) := inf{ ‖T − A‖ : A : E → F bounded, linear with rank A < n } .

• the nth Gelfand number of T defined by

cn(T ) := inf{
∥∥T|Eo

∥∥ : Eo subspace of E with codim Eo < n } .

• the nth Kolmogorov number of T defined by

dn(T ) := inf{
∥∥QF

Fo
T
∥∥ : Fo subspace of F with dim Fo < n } ,

where QF
Fo

denotes the canonical surjection from the Banach space F onto the
quotient space F/Fo.

• the nth Tichomirov number of T defined by

tn(T ) := an(IFTQE) ,

where IF : F → `∞(BF ′) is the canonical embedding and QE : `1(BE) → E is
the canonical surjection.

For s ∈ {e, a, c, d, t} and arbitrary operators T, S : E → F the sequence (sn(T )) is
monotone decreasing and we have s1(T ) = ‖T‖. For n,m ∈ N we also know

sn+m−1(S + T ) ≤ sn(S) + sm(T ) .

This and the following properties can be found in [12, Ch. 1 and 2] and [31, Ch. 2].
Moreover, for T : E1 → E2, S : E2 → E3 and n ∈ N we have

sn(ST ) ≤ ‖S‖ sn(T ) and sn(ST ) ≤ sn(S) ‖T‖ .

Except for the Tichomirov numbers all of the above sequences are also multiplicative
in the sense of

sn+m−1(ST ) ≤ sn(S) sm(T ) .
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For s ∈ {e, d, t} these numbers are surjective, i.e. sn(TQ) = sn(T ) for every metric
surjection Q. For s ∈ {c, t} these numbers are injective, i.e. sn(IT ) = sn(T ) for every
metric injection I. The entropy numbers are only injective in the weaker sense of
en(IT ) ≤ en(T ) ≤ 2en(IT ) for every metric injection I.
The s-numbers are ordered by

tn(T ) ≤ cn(T ) ≤ an(T ) and tn(T ) ≤ dn(T ) ≤ an(T ) .

Moreover, for T : E → F we have an(T ) = cn(T ), resp. an(T ) = dn(T ) if E, resp.
F is a Hilbert space (cf. [12, Prop. 2.4.1. and 2.4.4.]). The following theorem is due
to Carl (cf. [3, Th. 1]) and gives a relation between entropy numbers and the above
quantities. Another, more elementary proof can be found in [12, Th. 3.1.1.].

Theorem 1.4 For every 0 < p < ∞ there is a constant cp ≥ 1 such that for every
operator T : E → F and all n ∈ N we have

sup
k≤n

k1/p ek(T ) ≤ cp sup
k≤n

k1/p tk(T ) .

Let s ∈ {e, a, c, d, t}, 0 < p < ∞ and 0 < q ≤ ∞. Then for Banach spaces E and F
we define

L(s)
p,q(E,F ) := {T : E → F : T linear and continuous with (sn(T )) ∈ `p,q} .

Equipped with the quasi-norm λ
(s)
p,q(T ) := ‖(sn(T ))‖p,q this set becomes a quasi-

Banach space. In particular, for all T1, . . . , Tn ∈ L(s)
p,∞(E,F ) we have

λ(s)p,∞(
n∑

i=1

Ti) ≤ cp

(
n∑

i=1

(
λ(s)p,∞(Ti)

)r)1/r

,

where r = p
1+p

and cp > 0 is a constant only depending on p.
Finally we state some well-known facts on certain entropy numbers. The following
lemma can be found in [12, p.9]:

Lemma 1.5 Let E be an n−dimensional real Banach space. Then we have

2−
k−1
n ≤ ek(BE) ≤ 4 · 2−

k−1
n for all k ≥ 1.

The next theorem is due to Schütt (cf. [36, Th. 1]):

Theorem 1.6 Let 1 ≤ p < q ≤ ∞. Then there exists a constant c > 0 such that for
all n ∈ N and all log n ≤ k ≤ n we have

c−1

(
log2(

n
k
+ 1)

k

)1/p−1/q

≤ ek(id : `np → `nq ) ≤ c

(
log2(

n
k
+ 1)

k

)1/p−1/q

.
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1.3 Structures of finite dimensional subspaces

Given two n-dimensional Banach spaces E and F the Banach-Mazur-distance between
E and F is defined as

d(E,F ) := inf{‖T‖
∥∥T−1

∥∥ | T : E → F isomorphism } .

The next definition describes Banach spaces whose finite dimensional subspaces look
like the spaces `np :

Definition 1.7 Let 1 ≤ p ≤ ∞ and λ > 1. A Banach space X is said to be an Lp,λ-
space if every finite dimensional subspace E of X is contained in a finite dimensional
subspace F of X such that d(F, `dimF

p ) < λ.
We say that X is an Lp-space if it is an Lp,λ-space for some λ > 1.

For µ being a measure and 1 ≤ p ≤ ∞ the Lebesgue space Lp(µ) is an Lp-space.
Moreover, for K being a compactum the space C(K) is an L∞-space. For a proof see
e.g. [15, Th. 3.2].
In the following definition we describe the Banach spaces which contain arbitrarily
large, finite dimensional subspaces being close to the corresponding `np ’s.

Definition 1.8 Let 1 ≤ p ≤ ∞ and λ > 1. We say that the Banach space E contains
`np ’s λ-uniformly if for each n ∈ N there is a n-dimensional subspace En of E such
that d(En, `

n
p) < λ.

We say that E contains `np ’s uniformly if it contains `np ’s λ-uniformly for some λ > 1.

Because of Dvoretzky’s Theorem every infinite dimensional Banach space contains
`n2 ’s uniformly. A proof of this amazing theorem can be found in [15, Ch. 19]. A
characterization of Banach spaces containing `np ’s for some 1 ≤ p < 2 is presented in
the next section.
Finally we remember, that every Banach space E and its bidual E ′′ have the same
local structure. A proof of this can be found e.g. in [14, p. 75].

Theorem 1.9 (Principle of local reflexivity) Let X be a Banach space and ε >
0. Then for every finite dimensional subspace E of X ′′ there exists a subspace F of
X such that d(E,F ) ≤ 1 + ε.

1.4 Some notions on type and cotype

For the following definition we need the sequence of Rademacher functions (rn), where
the nth Rademacher function is defined by rn(t) = sign(sin(2nπt)) for t ∈ [0, 1].
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Definition 1.10 A Banach space E is of type p, 1 ≤ p ≤ 2, if there exists a constant
c > 0, such that for all n ∈ N and all x1, . . . , xn ∈ E we have(∫ 1

0

∥∥∥∥ n∑
i=1

ri(t)xi

∥∥∥∥2
E

dt

)1/2

≤ c

(
n∑

i=1

‖xi‖pE

)1/p

.

If this inequality only holds for all finite sequences x1, . . . , xn in the unit sphere, E is
called to be of equal-norm type p.

For Banach spaces in which a converse inequality holds we give the following notation:

Definition 1.11 A Banach space E is of cotype q, 2 ≤ q ≤ ∞, if there exists a
constant c > 0, such that for all n ∈ N and all x1, . . . , xn ∈ E we have(

n∑
i=1

‖xi‖qE

)1/q

≤ c

(∫ 1

0

∥∥∥∥ n∑
i=1

ri(t)xi

∥∥∥∥2
E

dt

)1/2

.

To cover the case q = ∞, the left hand side should be replaced by maxk≤n‖xk‖E.
If this inequality only holds for all finite sequences x1, . . . , xn in the unit sphere, we
say that E is of equal-norm cotype q.

Trivially, a Banach space of type p is also of type r for all 1 ≤ r ≤ p. Analogously,
a Banach space of cotype q is also of cotype r for all q ≤ r ≤ ∞. It is also easy to
check that every Banach space has type 1 and cotype ∞. A Banach space is called
B-convex, if it is of some type p > 1.
Banach spaces always have the same type or cotype as their bidual. This follows by
an easy application of the principle of local reflexivity. Moreover, if E is of type p,
its dual is of cotype p′. The converse is only true for B-convex spaces (cf. [15, Prop.
11.10 and Prop. 13.17]). Furthermore, a Banach space is B-convex, if and only if its
dual is. This can be found in [15, Cor. 13.7].
Hilbert spaces have type and cotype 2, and these are the only ones up to isomorphy
due to Kwapien’s Theorem (cf. [15, Th. 12.19]). The introduced Lp-spaces are of
type min{2, p} and of cotype max{2, p} for 1 ≤ p < ∞. In particular this holds for
the Lebesgue spaces Lp(µ). The spaces L∞(µ) and C(K), or more generally, L∞-
spaces are only of trivial type and cotype, provided that they have infinitely many
dimensions.
We know from Pisier’s Theorem (cf. [15, Th. 13.3] that a Banach space is B-convex,
if and only if it does not contain `n1 ’s uniformly. But with the help of a different notion
on type that we present in the following, much more can be said on Banach spaces
containing `np ’s uniformly for some 1 ≤ p ≤ 2. For this a random variable X on a
measure space (Ω,A, µ) is called standard p-stable for some 0 < p ≤ 2, if its Fourier
transform is of the form ∫

eitX(ω)µ(dω) = exp(−|t|p/2)
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for all t ∈ R. Information on p-stable random variables can be found in [26, Ch. 5].
With the help of the above definition we can introduce another notion of type:

Definition 1.12 Let 1 ≤ p < 2 and (πi) be a sequence of independent, standard
p-stable random variables on a measure space (Ω,A, µ). A Banach space E is said to
be of stable type p, if there is a constant c > 0 and some 0 < r < p such that for all
x1, . . . , xn ∈ E ∫

Ω

∥∥∥∥ n∑
i=1

πi(ω)xi

∥∥∥∥r
E

µ(dω)

1/r

≤ c

(
n∑

i=1

‖xi‖pE

)1/p

.

If a Banach space is of stable type p, then it is of type p. Conversely, if it is of type
p, it is also of stable type r for all 1 ≤ r < p. This can be found in [26, Prop. 9.12].
We mainly consider the concept of stable type because it allows the characterization
of Banach spaces containing `np uniformly:

Theorem 1.13 Let 1 ≤ p < 2. A Banach space contains `np ’s uniformly, if and only
if it is not of stable type p.

For a proof of this theorem we refer to [26, Th. 9.6]. The following Theorem, which can
be found in [26, Cor. 9.7] is also important for some of our considerations. Roughly
speaking it states that no Banach space has got a maximal stable type:

Theorem 1.14 Let 1 ≤ p < 2. If a Banach space is of stable type p it is also of
stable type r for some r > p.

In the sequel we also need a weaker notion on type and cotype. For this a random vari-
able X on a probability space (Ω,A, µ) is called standard Gaussian, if its distribution
satisfies

µ(X−1(B)) =
1√
2π

∫
B

e−t2/2dt

for all Borel sets B ⊂ R. Moreover, given a sequence of independent standard
Gaussian variables (gn) on (Ω,A, µ), we define the γ-summing norm of an operator
T : `n2 → E by

πγ(T ) :=

(∫
Ω

∥∥∥∥ n∑
k=1

gk(ω) Tek

∥∥∥∥2
E

µ(dω)

)1/2

.

Here e1, . . . , en denotes the canonical basis of `n2 . Furthermore for T : E → `n2 we
define

π∗
γ(T ) := sup{ trace(TS) | S : `n2 → E with πγ(S) ≤ 1 } ,

which is in fact the adjoint norm of πγ. For details on the πγ-summing norm we refer
to [15, Ch. 12]. Now we are able to give the following two definitions:
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Definition 1.15 A Banach space E is of weak type p, 1 < p ≤ 2 if there exists a
constant c > 0 such that for all n ∈ N and all operators T : E → `n2 :

sup
n≥1

n1−1/p an(T ) ≤ c π∗
γ(T ) .

Definition 1.16 A Banach space E is of weak cotype q, 2 ≤ q < ∞ if there exists a
constant c > 0 such that for all n ∈ N and all operators T : `n2 → E:

sup
n≥1

n1/q an(T ) ≤ c πγ(T ) .

A Banach space E is of weak type p, if and only if E is B-convex and E ′ is of weak
cotype p′ (cf. [30, Th.3.3.]). Moreover we have:

Proposition 1.17 A Banach space E has always the same weak type or weak cotype
as its bidual.

Proof: Because of the above remark it suffices to prove the statement for cotype q.
For this we first observe that πγ(T ) = πγ(IT ) and an(T ) = cn(T ) = cn(IT ) = an(IT )
for any operator T : `n2 → E and every metric injection I. Now the implication from
E ′′ to E is trivial. The converse follows by an application of the principle of local
reflexivity. J

It is known that cotype q implies weak cotype q (cf. [30, Lem. 1.3. and p. 83]) and
that conversely, weak cotype q implies cotype r for all q < r ≤ ∞ (cf. [30, p. 93]).
Analogue statements hold for the relation between type and weak type. In particular
a Banach space is B-convex, if and only if it is of some weak type p > 1. However,
weak (co)-type q does not imply (co)-type q (cf. [30, p. 93]).
Finally, in contrast with the fact that equal-norm type 2 coincides with type 2 (this
is due to Pisier, see [21]), equal-norm type p ∈ (1, 2) is the same as weak type p (cf.
[30, Th. 3.4.]). Again, an analogue statement holds for the weak cotype case (cf. [30,
Th. 2.3.]). For further details on weak type and cotype we also refer to [30].

1.5 Duality of entropy numbers - some results

The duality problem of entropy numbers concerns the question whether there is a
relation between the entropy numbers of an arbitrary operator and its dual operator.
Roughly speaking it asks, whether there are constants a, c > 0 such that for every
operator T : E → F it holds

c−1 eak(T
′) ≤ ek(T ) ≤ c ebk/ac(T

′) .
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In a weaker form it conjectures that (en(T )) and (en(T
′)) have at least similar asymp-

totic behaviour, for example in the sense of

c−1 ‖(en(T ′))‖ ≤ ‖(en(T ))‖ ≤ c ‖(en(T ′))‖

for any symmetric, i.e. permutation invariant, norm ‖.‖ defined for sequences. Al-
though the general case is open, there are some powerful results. We begin with the
following theorem of Bourgain, Pajor, Szarek and Tomczak-Jaegermann which can be
found in [2, Th. 3].

Theorem 1.18 Let E and F be Banach spaces such that one of them is B-convex.
Then for every 0 < p < ∞ there exists a constant c ≥ 1, such that for all compact
operators T : E → F and all n ≥ 1 we have

c−1 sup
k≤n

k1/p ek(T ) ≤ sup
k≤n

k1/p ek(T
′) ≤ c sup

k≤n
k1/p ek(T ) .

A little trick due to Carl (cf. [6, p. 106]) which we later use again gives us the
following corollary we often need:

Corollary 1.19 Let E and F be Banach spaces such that one of them is B-convex
and T : E → F be a compact operator. Moreover let (an) be a regular sequence. Then
we have

en(T ) � an if and only if en(T
′) � an

and
en(T ) ∼ an if and only if en(T

′) ∼ an .

Proof: Let c > 0 such that an ≤ ca2n and am ≤ can for all n ≤ m. We define r := 1
log2 c

and remember

an ≤ c2
(m
n

)1/r
am

for n ≤ m. Hence the first equivalence is a direct consequence of Theorem 1.18 in the
case of p = r.
We now assume en(T ) ∼ an. Then we already know en(T

′) ≤ c1 an. Moreover we
have an ≤ c2 m1/r am·n for all m,n ∈ N. Hence for p ∈ (0, r) and suitable constants
c2, c3 ≥ 1 we obtain:

(m · n)1/p am·n ≤ c2 (m · n)1/p em·n(T )

≤ c3 sup
k≤m·n

k1/p ek(T
′)

≤ c3

(
sup
k≤n

k1/p ek(T
′) + sup

n≤k≤m·n
k1/p ek(T

′)

)
≤ c1 c3 c

2 n1/p an + c3 en(T
′) (m · n)1/p

≤ c1 c3 c
4 n1/p m1/ram·n + c3 en(T

′) (m · n)1/p
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by Theorem 1.18. Hence, if we choose m ∈ N with m1/p−1/r > c1 · c3 · c4 we get
en(T

′) ∼ an. The converse implication can be proven analogously. J

For an operator T with fixed finite rank it is also possible to compare some entropy
numbers of T directly with some of T ′. This is due to König and Milman (cf. [23, Th.
3] and [35, Cor. 8.11.]).

Theorem 1.20 For every a > 0 there is a constant c > 1 such that for any finite
rank operator T : E → F between real Banach spaces and all n > a · rank T we have

ebcnc(T ) ≤ 2en(T
′) and ebcnc(T

′) ≤ 2en(T ) .

Using rank T = rank T ′ = rank T ′′ for every finite rank operator T we immediately
obtain the following corollary:

Corollary 1.21 There is a constant c ∈ N such that for every operator T : E → F
with rank T = n we have

ecn(T
′′) ≤ 4en(T ) .

1.6 Local estimates of entropy numbers

In this section we introduce some so-called ‘local estimates’ of entropy numbers which
play a fundamental role for our results. Thereby our aim is to systemize both well-
known results and duality relations. For the sake of clarity we give some ad-hoc
definitions. We begin with:

Definition 1.22 A Banach space E is said to be of entropy type p, 1 < p ≤ 2, if
there exists a constant c > 0 such that for all n ∈ N and all operators T : `n1 → E we
have

ek(T ) ≤ c

(
log2(

n
k
+ 1)

k

)1−1/p

‖T‖ , 1 ≤ k ≤ n .

One easily checks with the principle of local reflexivity that a Banach space is of
entropy type p, if and only if its bidual is. Moreover, there are important connections
to the concepts of type and weak type which are described in the next theorem:

Theorem 1.23 Let E be a Banach space and 1 < p < 2. Then the following state-
ments are equivalent:

i) E is of weak type p.

ii) E is of entropy type p.
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iii) For every 0 < r < p′ there exists a constant c > 0 such that for all n ∈ N and
all operators T : `n1 → E it holds:

sup
k≥1

k1/r ek(T ) ≤ c n1/r−(1−1/p) ‖T‖ .

In this case we say that E is of weak entropy type p.

Moreover, in the case of p = 2 the following implications hold:

E is of type 2 ⇒ ii) ⇒ iii) ⇒ i)

Proof: The implication i) → ii) is due to Junge and M. Defant in [22, Th. 1]. In a
weaker form it originally goes back to Maurey (cf. [34] and [6, Prop. 1]). From ii) to
iii) one gets by a simple estimation. From iii) we infer that

en(T ) ≤ c n−(1−1/p) ‖T‖

for every operator T : `n1 → E and all n ∈ N. But this implies that E is of weak type
p by [22, Th. 1].
In the case p = 2 the implication iii) → i) is due to Pajor [32]. The fact that type 2
implies entropy type 2 was proven by Maurey (cf. [34] and [6, Prop. 1]). J

Apart from λ
(e)
r,∞(T : `n1 → E) for 0 < r < p′ we are also interested in the limiting case

λ
(e)
p′,∞(T : `n1 → E). Although the estimation is very easy we want to point out the

result in a lemma:

Lemma 1.24 Assume that E is of entropy type p, 1 < p ≤ 2. Then there exists a
constant c > 0 such that for all operators T : `n1 → E we have

sup
k≥1

k1−1/p ek(T ) ≤ c ‖T‖ (log2(n+ 1))1−1/p .

We now consider the ‘dual’ situation:

Definition 1.25 A Banach space E is said to be of entropy cotype q, 2 ≤ q < ∞, if
there exists a constant c > 0 such that for all n ∈ N and all operators T : E → `n∞ we
have

ek(T ) ≤ c

(
log2(

n
k
+ 1)

k

)1/q

‖T‖ , 1 ≤ k ≤ n .

To transfer the statements of Theorem 1.23 to the case of entropy cotype we need
some additional information:

Lemma 1.26 Let (an) be a positive sequence with lim infn→∞ an = 0. Moreover, let
E be a Banach space such that for all n ∈ N and all operators T : E → `n∞ we have
en(T ) ≤ an ‖T‖. Then E must be B-convex.
In particular, if E is of some entropy cotype q <∞, then E is B-convex.
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Proof: Suppose E is not B-convex. Then E ′ is not B-convex either and therefore it
contains `n1 ’s uniformly by Pisier’s Theorem. Hence without loss of generality there are
subspaces En ⊂ E ′ and isomorphisms Tn : En → `n1 with ‖Tn‖ = 1 and ‖T−1

n ‖ ≤ 2.
Let In be the embedding of En into E ′ and Sn := InT

−1
n : `n1 → E ′. Then we

have ek(S
′
n) = ek((T

−1
n )′) for all k ≥ 1 since I ′n is a metric surjection. We define

Rn := (S ′
n)|E : E → `n∞. One easily checks Sn = R′

n and hence S ′
n = R′′

n. Now let
c > 0 be the constant appearing in Corollary 1.21. By Lemma 1.5 we then obtain
that

2−c ≤ ecn(id`n∞) = ecn((T
−1
n )′T ′

n) ≤ ecn((T
−1
n )′) = ecn(R

′′
n) ≤ 4 en(Rn) ≤ 8 an

holds for all n ≥ 1. But this contradicts the assumption on (an). J

Proposition 1.27 For every Banach space E and 1 < p ≤ 2 the following conditions
are equivalent:

i) E is of entropy cotype p′.

ii) E ′ is of entropy type p.

In particular E and E ′′ always have the same entropy cotype.

Proof: Suppose that E is of entropy cotype p′ and let T : `n1 → E ′ be an arbitrary
operator. We define S := T ′

|E : E → `n∞. Then we have S ′ = T and an application of
Lemma 1.26 together with Theorem 1.18 gives the desired assertion.
Conversely, if E ′ is of entropy type p then E ′ is B-convex by Theorem 1.23. Again an
application of Theorem 1.18 yields the assertion. J

Now we are able to ‘dualize’ Theorem 1.23:

Theorem 1.28 Let E be a Banach space and 2 < q < ∞. Then the following
statements are equivalent:

i) E is B-convex and of weak cotype q.

ii) E is of entropy cotype q.

iii) For every 0 < r < q there exists a constant c > 0 such that for all n ∈ N and
all operators T : E → `n∞ holds:

sup
k≥1

k1/r ek(T ) ≤ c n1/r−1/q ‖T‖ .

In this case we say that E is of weak entropy cotype q.

Moreover, in the case q = 2 the following implications hold:

E is B-convex and of cotype 2 ⇒ ii) ⇒ iii) ⇒ i)
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Proof: Suppose first that E is B-convex and of weak cotype q. Then E ′ is of weak
type q′ and therefore of entropy type q′. Hence Proposition 1.27 tells us that E is of
entropy cotype q.
Now suppose that iii) holds. Then we see that E is B−convex by Lemma 1.26.
Moreover, repeating the proof of Proposition 1.27 we obtain that E ′ is of weak entropy
type q′. But then E ′ is of weak type q′ and hence E is of weak cotype q.
In the case of q = 2 the proof is similar. J

Furthermore, we obtain analogously to Lemma 1.24:

Lemma 1.29 Assume that E is of entropy cotype q, 2 ≤ q < ∞. Then there exists
a constant c > 0 such that for all T : E → `n∞ we have

sup
k≥1

k1/q ek(T ) ≤ c ‖T‖ (log2(n+ 1))1/q .

Up to now we have collected a lot of local properties a Banach space may have. We
summarize some of them in a diagram to avoid confusions:

E is of
type p

E is an Lq-space,
1 ≤ q < ∞

E is of weak
type p

E is of entropy
type p

E is of weak
entropy type p

E is of stable
type p− ε

E does not contain
(`np )’s uniformly

E is of stable
type p

E is of some
stable type p+ ε

?

6
1 ≤ p < 2

?

p = min{2, q}

-1 ≤ p < 2

?

1 ≤ p < 2

-1 < p ≤ 2

?

1 < p ≤ 2

?

1 < p < 2

6
1 < p ≤ 2

-1 < p ≤ 2

�
1 < p < 2

-1 < p ≤ 2

Note that we have dropped out the duality relations between the several notions of
type and cotype. However, the implications shown in the diagram are the most useful
ones for our later work.
Finally we point out that in some cases there are similar local estimates to the dis-
cussed ones for the Gelfand and Kolmogorov numbers:

Remark 1.30 Let T : `n1 → E be an arbitrary operator and π2(T ) its 2-absolutely
summing norm (cf. [15]). Then Carl and Pajor proved in [11, Th. 2.2.] that there is
a universal constant c > 0 such that

ck(T ) ≤ c

(
log2(

n
k
+ 1)

k

)1/2

π2(T ) , 1 ≤ k ≤ n .
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Note that for Hilbert spaces E the 2-absolutely summing norm of T can be replaced
by the operator norm ‖T‖ if we enlarge the constant c because of Grothendiecks
Theorem. (The Hilbert space case is what Carl and Pajor actually proved.) Hence for
Hilbert spaces analogue estimates to those of the entropy type definition hold with
q = 2. Moreover, by duality the same estimates hold for the Kolmogorov numbers
dn(T ) of operators T : E → `n∞ starting in a Hilbert space E.
Now let us assume that E is an Lp,λ-space for some 1 < λ, p < ∞ and T : `n1 → E.
Since π2 is an injective norm and

d(im T , `rank T
2 ) ≤ λ n|1/2−1/p|

by a theorem of Lewis (cf. [27] and [40, III.B. Cor. 9]), one easily checks that

π2(T ) ≤ c n|1/2−1/p| ‖T‖

for some constant c > 0 only depending on E. Hence for all 0 < r < 2 there is a
constant cr > 0 such that

sup
k≥1

k1/r ck(T ) ≤ cr n
1/r−min{1/p,1/p′} ‖T‖ . (1.1)

Analogously, if T : E → `n∞ is an operator starting in an Lp-space and 0 < r < 2, we
obtain a constant cr > 0 such that

sup
k≥1

k1/r dk(T ) ≤ cr n
1/r−min{1/p,1/p′} ‖T‖ . (1.2)

We will discuss some consequences of the above estimates at the end of Chapter 3.
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Chapter 2

Decomposition of Operators

In this chapter our aim is to show how a 1-Hölder-continuous operator T : E → C(K)
can be decomposed into finite sums of type

T =
n∑

i=0

Ti + S ,

where the operators Ti : E → C(K) essentially map into some spaces `αi
∞. Thereby we

also have to control both the norms of the operators To, . . . , Tn, S and the dimensions
αi in terms of the entropy numbers of the underlying compact metric space (K, d).
Our construction is inspired by the earlier work of Carl, Heinrich and Kühn (cf. [9,
Lem. 1 and 2] and [12, Lem. 5.10.1. and 5.10.2.]).
We begin with a simple lemma which describes how a 1-Hölder-continuous operator
can be approximated with the help of a partition of unity:

Lemma 2.1 Let (K, d) be a compact metric space and T : E → C(K) be a 1-Hölder-
continuous operator. Furthermore, let ϕ1, . . . , ϕn ∈ C(K) be a partition of unity and
t1, . . . , tn ∈ K such that ϕi(tj) = δij. Then for the operator

A : E → C(K)

x 7→
n∑

i=1

Tx(ti) ϕi

we have:

‖A‖ ≤ ‖T‖
im A ⊂ span {ϕ1, . . . , ϕn} =

1

`n∞
‖T − A‖ ≤ 2 sup

i≤n
ε1(supp ϕi) ‖T‖1
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Proof: To show ‖A‖ ≤ ‖T‖, we just observe that for x ∈ E and t ∈ K:

|Ax(t)| =
∣∣∣∣ n∑
i=1

Tx(ti)ϕi(t)

∣∣∣∣ ≤ n∑
i=1

|Tx(ti)|ϕi(t) ≤
n∑

i=1

‖Tx‖ϕi(t) = ‖Tx‖ .

Now let us define ε := sup
i≤n

ε1(supp ϕi). Then for t ∈ supp ϕi and x ∈ BE we get

|Tx(t)− Tx(ti)| ϕi(t) ≤ 2 ε ‖T‖1 ϕi(t) ,

because T is 1-Hölder-continuous. Since the last inequality is trivial for t 6∈ supp ϕi

we obtain

|Tx(t)− Ax(t)| =

∣∣∣∣ n∑
i=1

(Tx(t)− Tx(ti)) ϕi(t)

∣∣∣∣
≤

n∑
i=1

|Tx(t)− Tx(ti)| ϕi(t)

≤ 2 ε ‖T‖1
n∑

i=1

ϕi(t) = 2 ε ‖T‖1 .

Therefore we have ‖T − A‖ ≤ 2 ε ‖T‖1. It remains to prove that span {ϕ1, . . . , ϕn} is
isometrically isomorphic to `n∞. The ϕi’s are linearly independent since ϕi(tj) = δij.
Therefore the linear map

I : span {ϕ1, . . . , ϕn} → `n∞
n∑

i=1

λiϕi 7→ (λ1, . . . , λn)

is well defined and bijective. Furthermore for ϕ =
∑n

i=1 λiϕi we have

‖ϕ‖ = sup
t∈K

∣∣∣∣ n∑
i=1

λiϕi(t)

∣∣∣∣ ≤ sup
t∈K

n∑
i=1

|λi|ϕi(t) ≤ ‖(λ1, . . . , λn)‖`n∞

and

‖ϕ‖ = sup
t∈K

∣∣∣∣ n∑
i=1

λiϕi(t)

∣∣∣∣ ≥
∣∣∣∣ n∑
i=1

λiϕi(tj)

∣∣∣∣ = |λj| .J

Having learned how we can approximate 1-Hölder-continuous operators, our further
work can be described as follows:
First we construct a finite sequence of partitions of unity Po, . . . , Pn such that for each
of them we can control its cardinality and the diameter of the supports of its functions.
Then we apply the above lemma in order to build corresponding ’approximation’
operators Ao, . . . , An, and finally we define Ti := Ai − Ai−1.
For the construction of Po, . . . , Pn we will use some sort of backward induction. For
clarity’s sake we first show how the induction step works:
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Lemma 2.2 Let (K, d) be a compact metric space, (ϕi) ⊂ C(K) be a partition of
unity, and ti ∈ K such that ϕi(tj) = δij. Furthermore, let M ∈ N and δ > 0 such that
εM(K) < δ. Then there exists a partition of unity (ψi) of at most M functions and
si ∈ K such that:

ψi(sj) = δij

ε1(supp ψi) ≤ δ + sup
j
ε1(supp ϕj)

span (ψi) ⊂ span (ϕi)

Proof: Let ε := supj ε1(supp ϕj). Since K is compact, there are elements yi ∈ K
such that supp ϕi ⊂ B(yi, ε). Furthermore, εM(K) < δ implies the existence of a
δ-net {z1, . . . , zm} ⊂ K with m ≤ M . Now let A1, . . . , Am be a partition of K with
Ai ⊂ B(zi, δ). Then for 1 ≤ i ≤ m we define

ψi :=
∑
yj∈Ai

ϕj

if there exists an index j with yj ∈ Ai. Otherwise we omit the index i. Therefore, (ψi)
is a partition of unity of at most M functions and span (ψi) ⊂ span (ϕi). Moreover,
for t ∈ supp ψi there exists an yj ∈ Ai such that t ∈ supp ϕj ⊂ B(yj, ε). Hence
d(t, yj) ≤ ε. On the other hand, yj ∈ Ai ⊂ B(zi, δ) implies d(yj, zi) ≤ δ. Therefore,
we get d(t, zi) ≤ δ + ε and hence

ε1(supp ψi) ≤ δ + ε .

Finally, let 1 ≤ i ≤ m such that there exists an index j with yj ∈ Ai. Define si := tj.
Then for k ≤ m we obtain

ψk(si) =
∑
yl∈Ak

ϕl(si) =
∑
yl∈Ak

ϕl(tj) =
∑
yl∈Ak

δl,j = δi,k

since yj ∈ Ak if and only if i = k. J

Iterating the procedure of Lemma 2.2, we obtain a finite sequence of partitions of
unity with properties we are able to control by some entropy numbers of (K, d):

Lemma 2.3 Let (K, d) be a compact metric space and n ≥ 1 be an integer. Moreover,
let αo, a1, . . . , αn ∈ N and β−1, βo, β1, . . . , βn > 0 be finite sequences such that

εαi
(K) < βi

2βi ≤ βi−1

for all 0 ≤ i ≤ n. Then there exist partitions of unity Po, . . . , Pn ⊂ C(K), Pk = (ϕk,i)i
and elements tk,i ∈ K such that for all 0 ≤ k ≤ n we have:

card Pk ≤ αk

ε1(supp ϕk,i) ≤ βk−1

ϕk,i(tk,j) = δij

span P k ⊂ span P k+1 .
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Proof: Let k = n. Since εαn(K) < βn there exists a minimal βn-net Γ consisting of
an ≤ αn elements x1, . . . , xan . Let Pn = (ϕn,i)i≤an be a partition of unity subordinate
to this open covering. Then

ε1(supp ϕn,i) ≤ ε1(B(xi, βn)) = βn ≤ βn−1

and since Γ is minimal, we can find elements tn,j ∈ B(xj, βn) such that tn,j 6∈ B(xi, βn)
for i 6= j. Hence ϕn,i(tn,j) = δij.
Now we assume that we have already constructed Pk+1 according to the assertion.
Then by Lemma 2.2 we get a partition of unity Pk := (ψi) of at most αk functions
and elements (si)i such that

ε1(supp ψi) ≤ βk + sup
j
ε1(supp ϕk+1,j) ≤ 2βk ≤ βk−1

ψi(sj) = δij

span P k ⊂ span P k+1 .

Therefore, we define ϕk,i := ψi and tk,i := si. J

Now we combine the previous lemma with Lemma 2.1 and obtain a decomposition of
1-Hölder-continuous operators T : E → C(K) announced at the beginning:

Lemma 2.4 Let (K, d) be a compact metric space and n ≥ 1 be an integer. Moreover,
let αo, a1, . . . , αn ∈ N and β−1, βo, β1, . . . , βn > 0 be finite sequences, such that

εαi
(K) < βi

2βi ≤ βi−1

for all 0 ≤ i ≤ n. Furthermore, let T : E → C(K) be a 1-Hölder-continuous operator.
Then there exists a decomposition

T =
n∑

i=0

Ti + S

by operators Ti : E → C(K) and S : E → C(K) such that

‖Ti‖ ≤ 4βi−2 ‖T‖1 for i = 1, . . . , n

‖To‖ ≤ ‖T‖
‖S‖ ≤ 2βn−1 ‖T‖1

im T i ↪→1 `αi
∞ for i = 0, . . . , n.

Moreover, To is of the form x 7→
∑

i Tx(si)ψi(.), where (ψi)i ⊂ C(K) is a partition
of unity of at most αo functions with ψi(sj) = δi,j and ε1(supp ψi) ≤ β−1.
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Proof: By Lemma 2.3 we get partitions of unity P0, . . . , Pn. Therefore, by Lemma 2.1
we can construct operators Ak : E → C(K) with

‖Ak‖ ≤ ‖T‖
‖T − Ak‖ ≤ 2 βk−1 ‖T‖1

im Ak ⊂ span P k ↪→
1

`αk
∞ .

Now we define To := Ao, Ti := Ai − Ai−1 for i = 1, . . . , n and S := T − An. Clearly,
we have T =

∑n
i=0 Ti + S and ‖S‖ ≤ 2βn−1‖T‖1. Furthermore,

‖Ti‖ ≤ ‖T − Ai‖+ ‖T − Ai−1‖ ≤ 2 ‖T‖1 (βi−1 + βi−2) ≤ 4βi−2 ‖T‖1

holds. Since im Ak−1 ⊂ span Pk, we finally obtain im Tk ⊂ span Pk. J
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Chapter 3

Entropy of C(K)-valued operators

Given a 1-Hölder-continuous operator T : E → C(K), one can ask how the entropy
numbers of T are influenced by those of the underlying compact metric space (K, d).
If we use

ak+1(T ) ≤ ω(T, εk(K)) ≤ ‖T‖1 εk(K)

which can be found in [12, Th. 5.6.1.], Theorem 1.4 tells us

sup
k≤n

k1/p ek(T ) ≤ 21/p cp cK ‖T‖1 sup
k≤n

k1/p εk(K) , (3.1)

where cp is the constant of Theorem 1.4 and cK := 1
min{1,ε1(K)} . Hence if (an) is a

regular sequence one easily checks that εn(K) � an implies

en(T ) � an .

However, as pointed out in the introduction, Carl, Heinrich and Kühn proved (cf. [9,
Th.1], [12, Th. 5.10.1] or [10, Th. 2.3]) that if E is a Hilbert space or, more generally,
if E ′ is of type q, then εn(K) � n−1/p implies

en(T ) � n−(1−1/q)−1/p .

Hence inequality (3.1) is not optimal in this case. Actually, it yields asymptotically
optimal results in some particular sense, if and only if E is not B-convex as we will
see in Chapter 5.
In this chapter we prove some variants of the above inequality (3.1) which do involve
the local structure of E in terms of (weak) entropy cotype. It turns out that we
have to distinguish three major types of inequalities. All of them yield asymptotically
optimal results in one of the following cases:

• εn(K) � (log(n+ 1))−1/p f(log(log(n+ 1) + 1)) ,

where p is “large”. This type of decay we call slow logarithmic.
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• εn(K) � (log(n+ 1))−1/p f(log(log(n+ 1) + 1)) ,

where p is “small”. This type of decay we call fast logarithmic.

• εn(K) � n−1/p f(log(n+ 1)) ,

where 0 < p <∞.

In all cases f denotes a σ-controlled function.

We will establish the announced inequalities in sections 3.1, 3.2 and 3.3. Thereafter
in the forth section we show how one can estimate (en(T )) with the help of these
inequalities, if one knows that (εn(K)) decreases in one of the above senses. In the
last section we discuss some generalizations and give historical remarks.
Throughout this chapter we restrict ourselves to 1−Hölder-continuous operators, since
it is easy to derive similar results for α−Hölder-continuous operators by equipping
(K, d) with the new metric dα (cf. [8]).
Moreover, all results of this section can be applied to 1-Hölder-continuous operators
T : E → `∞(A), where A is a precompact metric space, since such operators factor
canonically through C(Ã), where Ã denotes the completion of A.

3.1 The case of slow logarithmic decay

As pointed out above we begin with an estimate which covers slow logarithmic decay
of (εn(K)). Although one might think that this case is rather artificial since such a
decay never occurs for K ⊂ Rn, it turns out that the following theorem - together
with an easy generalization - have impressive consequences we shall discuss in sections
4.1 and 5.3:

Theorem 3.1 Let E be a Banach space of entropy cotype q, 2 ≤ q < ∞. Then for
all p ∈ (q,∞) there exists a constant c ≥ 1, such that for all compact metric spaces
(K, d) and all 1-Hölder-continuous operators T : E → C(K) we have

sup
k≤n

k1/p ek(T ) ≤ c cK ‖T‖1 sup
k≤n

k1/p ek(K) .

Roughly speaking, Theorem 3.1 states that for B-convex Banach spaces and “large” p
one can replace the entropy numbers εn(K) in inequality (3.1) by the dyadic entropy
numbers en(K). Note that in general the latter ones decrease much faster then the
former ones.
Corollary 3.5 will show how the above inequality can be used to obtain estimates on
(en(T )), while we will see by Proposition 5.8 that these estimates cannot be asymp-
totically improved in general. Moreover, we will prove in Proposition 5.3 that Banach
spaces for which the inequality of the above theorem holds for some p ∈ [2,∞) must
be of entropy cotype p+ ε for all ε > 0.
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Proof of Theorem 3.1: We first assume that ε1(K) ≥ 1. Then for n = 1 the assertion
is trivial. Therefore let us additionally assume n ≥ 2. For fixed p ∈ (q,∞) we define:

C := sup
k≤n

k1/pek(K)

and r := b1
p
log2(n− 1)c. To apply Lemma 2.4, we use the finite sequences

αi := bexp2 2
ipc for 0 ≤ i ≤ r

βi := C · 2−i+1/p for −2 ≤ i ≤ r .

Since blog2 αic + 1 ≤ n one easily verifies εαi
(K) < βi for 1 ≤ i ≤ r. Addition-

ally εαo(K) = e2(K) ≤ C · 2−1/p < βo and 2βi ≤ βi−1 hold. Hence we can find a
decomposition

T =
r∑

i=0

Ti + S

according to Lemma 2.4. Thus, for s := q
1+q

and a suitable constant c1 ≥ 1 we obtain

n1/q en(T ) ≤ n1/q en(
r∑

i=0

Ti) + n1/q ‖S‖

≤ sup
j≥1

j1/q ej(
r∑

i=0

Ti) + 2 n1/q βr−1 ‖T‖1

≤ c1

(
r∑

i=0

(
λ(e)q,∞(Ti)

)s)1/s

+ C 22+1/p+1/q (n− 1)1/q 2−r ‖T‖1 .

Since 4 · β−2 = 4 · 22+1/p · C ≥ 1 we observe ‖To‖ ≤ ‖T‖ ≤ ‖T‖1 ≤ 4β−2‖T‖1. Hence
for 0 ≤ i ≤ r we may estimate

λ(e)q,∞(Ti) ≤ 2 c2 ‖Ti‖ (log2(αi + 1))1/q

≤ 24 c2 βi−2 ‖T‖1 (log2 αi)
1/q

= 26+1/p c2 C ‖T‖1 2i(
p
q
−1) ,

where c2 > 0 is the constant appearing in Lemma 1.29. Thus with c3 := 26+1/p c1 c2

and c4 :=
2
p
q −1

(2
s(

p
q −1)−1)1/s

we receive

c1

(
r∑

i=0

(sup
j≥1

j1/q ej(Ti))
s

)1/s

≤ c3 C ‖T‖1

(
r∑

i=0

(
2i(

p
q
−1)
)s)1/s

≤ c3 c4 C ‖T‖1 2r(
p
q
−1) .

34



Hence for c5 := c3 c4 + 23+1/p+1/q we obtain:

n1/q en(T )

≤ c3 c4 C ‖T‖1 2r(
p
q
−1) + C 22+1/p+1/q (n− 1)1/q 2−r ‖T‖1

≤ ‖T‖1 C
(
c3 c4 2

1
p
log2(n−1) ( p

q
−1) + 22+1/p+1/q (n− 1)1/q 2−

1
p
log2(n−1)+1

)
= c5 ‖T‖1 C (n− 1)1/q−1/p ,

i.e. the assertion is proven in the case ε1(K) ≥ 1.
Now let us assume that ε1(K) < 1. Then d̃(s, t) := ε1(K)−1 d(s, t) defines a new,

equivalent metric on K with ε
(d̃)
n (K) = ε1(K)−1 ε

(d)
n (K) and

|T |(d̃)1 = ε1(K) |T |(d)1 ≤ |T |(d)1 .

Hence we obtain ε
(d̃)
1 (K) = 1 and ‖T‖(d̃)1 ≤ ‖T‖(d)1 . Using the first case we finally

receive:

n1/pen(T ) ≤ c ‖T‖(d̃)1 sup
k≤n

k1/pe
(d̃)
k (K)

≤ c ε
(d)
1 (K)−1 ‖T‖(d)1 sup

k≤n
k1/pe

(d)
k (K) .J

3.2 The case of fast logarithmic decay

We shall now establish an inequality which corresponds with the case of (εn(K))
decreasing essentially like (log(n + 1))−1/p with “small” p. It turns out that this
estimate has got the most technical proof:

Theorem 3.2 Let E be a Banach space of entropy cotype q, 2 ≤ q < ∞. Then for
all p ∈ (0, q) and all σ-controlled functions f : [0,∞) → (0,∞) with 0 < σ < 1

p
− 1

q

there exists a constant c ≥ 1, such that for all compact metric spaces (K, d) and all
1-Hölder-continuous operators T : E → C(K) we have

sup
k≤n

k
1
q (log2(k + 1))

1
p
− 1

q f(log2(k + 1)) ek(T ) ≤ c · cK ‖T‖1 sup
k≤an

k
1
p f(k) ek(K) ,

where an := n
p

q(1−σp) log2(n+ 1).

Corollary 3.5 will show how the above inequality can be used to obtain estimates
on (en(T )) whenever the sequence (en(K)) decreases essentially like n−1/p for some
p ∈ (0, q). Moreover, in Proposition 5.8 these estimates turn out to be asymptotically
optimal for some 1-Hölder-continuous operator T : E → C(K), if E is not of any
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better entropy cotype than q. Conversely, we will prove in Proposition 5.4 that Banach
spaces for which the inequality of the above theorem holds for some q ∈ [2,∞) and
p ∈ (0,∞) must be of entropy cotype q + ε for all ε > 0.
Before we prove Theorem 3.2, we need an additional lemma, which is rather technical:

Lemma 3.3 Assume that E is a Banach space of entropy cotype q ∈ [2,∞). Let
p ∈ (0, q) and f : [0,∞) → (0,∞) be a σ-controlled function with 0 < σ < 1

p
− 1

q
.

Furthermore, let K be a compact metric space with ε1(K) ≥ 1 and T : E → C(K)
be a 1-Hölder-continuous operator. Moreover, let n ≥ 2 and ϕ1, . . . , ϕm ∈ C(K) be a
partition of unity with m ≤ n and ϕi(tj) = δi,j for suitable elements tj ∈ K. Then for
the operator

A : E → C(K)

x 7→
m∑
i=1

Tx(ti) ϕi

we have

en(A) ≤ c ‖T‖1 n
−1/q

(
sup
i≤m

ε1(supp ϕi) +
supi≤n(log2(i+ 1))1/p f(log2 i) εi(K)

(log2 n)
1/p f(log2 n)

)
,

where c =: cp,q,f (E) is a constant only depending on p, q, f and E.

Proof of Lemma 3.3: Let c1 ∈ N with c1 > 6 and 24+1/p+σ c
1/q
1 2−

c1
6 ≤ 1/2. Moreover

let cq(E) be a constant such that the entropy cotype q inequality for E holds for. We
define

Cn := sup
i≤n

(log2(i+ 1))1/p f(log2 i) εi(K) for n ≥ 2

c2 := c21

c3 := c
1/q
2 ·max

{
1,
f(1) · (log2 c2)1/p+σ

f(0)

}
cp,q,f (E) := max{c3, 31/q 24+1/p+1/q+σ cq(E)}

We proceed by induction on n. For 2 ≤ n ≤ c2 and A according to the assumption
we have

1 ≤ (log2 c2)
1/p max

2≤i≤c2
f(log2 i) (log2 n)

−1/p(f(log2 n))
−1

≤ (log2 c2)
1/p max

2≤i≤c2
(log2 i)

σf(1) (log2 n)
−1/p(f(log2 n))

−1

≤ sup
i≤m

ε1(supp ϕi) + (log2 c2)
1/p+σ f(1) (log2 n)

−1/p(f(log2 n))
−1(f(0))−1 Cn

≤ c3

c
1/q
2

(
sup
i≤m

ε1(supp ϕi) + (log2 n)
−1/p (f(log2 n))

−1 Cn

)
,
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since Cn ≥ f(0). Therefore we receive

en(A) ≤ cp,q,f (E) ‖T‖1 n
−1/q

(
sup
i≤m

ε1(supp ϕi) +
Cn

(log2 n)
1/p f(log2 n)

)
.

Now let n > c2 and A be according to the assumption. We define M :=
⌊

n
c1

⌋
+ 1

and ε := supi≤m ε1(supp ϕi). Since c1 <
√
n, we have 1

2
log2 n ≤ log2M < log2 n.

Hence we obtain

(log2M)−1/p (f(log2M))−1 ≤ 21/p (log2 n)
−1/p

(
log2 n

log2M

)σ

(f(log2 n))
−1

≤ 21/p+σ (log2 n)
−1/p (f(log2 n))

−1 . (3.2)

We let δ := Cn (log2M)−1/p (f(log2M))−1. Since M < n we get

εM(K) ≤ Cn (log2(M + 1))−1/p (f(log2M))−1 < δ .

Thus by Lemma 2.2 there exists a partition of unity (ψi) ⊂ C(K) of k ≤M functions
and elements si ∈ K such that

ψi(sj) = δij

ε1(supp ψi) ≤ δ + ε

span (ψi) ⊂ span (ϕi)

Now we define the operators

B : E → C(K)

x 7→
k∑

i=1

Tx(si) ψi

and S := A−B. Then for r :=
⌊
n
2

⌋
we get

en(A) ≤ er(B) + er(S) .

First we estimate er(B). Since M < n, our induction hypothesis tells us that the
assertion is already true for M and the operator B. Hence we may conclude

eM(B) ≤ cp,q,f (E) ‖T‖1 M
−1/q

(
(δ + ε) +

CM

(log2M)1/p f(log2M)

)
≤ cp,q,f (E) ‖T‖1

(
n

c1

)−1/q (
ε+

21+1/p+σ Cn

(log2 n)
1/p f(log2 n)

)
≤ cp,q,f (E) 2

1+1/p+σ c
1/q
1 ‖T‖1 n

−1/q

(
ε+

Cn

(log2 n)
1/p f(log2 n)

)
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by inequality (3.2). Furthermore, 6 < c1 < n implies

r

M
=

⌊
n
2

⌋⌊
n
c1

⌋
+ 1

≥
n
2
− 1

n
c1
+ 1

= c1 ·
1
2
− 1

n

1 + c1
n

≥ c1 ·
1
2
− 1

6

2
=
c1
6
.

Thus with [12, Lemma 5.10.3.] we obtain :

er(B) ≤ 8 · 2−r/M eM(B)

≤ 8 · 2−c1/6 cp,q,f (E) 2
1+1/p+σ c

1/q
1 ‖T‖1 n

−1/q

(
ε+

Cn

(log2 n)
1/p f(log2 n)

)
≤ 1

2
cp,q,f (E) ‖T‖1 n

−1/q

(
ε+

Cn

(log2 n)
1/p f(log2 n)

)
.

To estimate er(S) we first observe that

‖S‖ ≤ ‖T − A‖+ ‖T −B‖
≤ 2 ε ‖T‖1 + 2 (ε+ δ) ‖T‖1

≤ 4 ‖T‖1
(
ε+

Cn

(log2M)1/p f(log2M)

)
≤ 22+1/p+σ ‖T‖1

(
ε+

Cn

(log2 n)
1/p f(log2 n)

)
by Lemma 2.1. Since im S ↪→1 `m∞ ↪→1 `n∞, we finally obtain

er(S) ≤ 2 cq(E)

(
log2

(
n
r
+ 1
)

r

)1/q

‖S‖

≤ 23+1/p+σ cq(E)

(
log2 4

n
3

)1/q

‖T‖1
(
ε+

Cn

(log2 n)
1/p f(log2 n)

)
≤ 1

2
cp,q,f (E) ‖T‖1 n

−1/q

(
ε+

Cn

(log2 n)
1/p f(log2 n)

)
since E is of entropy cotype q. J

Proof of Theorem 3.2: As in the proof of Theorem 3.1 it suffices to consider the case
ε1(K) ≥ 1. For fixed p, q and f we let γ := p

q(1−σp)
and choose an integer m with

m > 2
1

1/p−σ . Additionally, for a fixed integer n with n ≥ a := max{2m,m3/γ} we
define

C := sup
k≤nγ log2(n+1)

k1/p f(k) ek(K)

r := bγ logm nc − 1

αi := nmi

for i = 0, . . . , r

βi := 2σC (log2 αi)
−1/p(f(log2 αi))

−1 for i = −1, . . . , r .
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An easy computation shows blog2 αic+ 1 ≤ nγ log2(n+ 1) and hence we get

εαi
(K) ≤ C (blog2 αic+ 1)−1/p (f(blog2 αic+ 1))−1

< C (log2 αi)
−1/p

(
blog2 αic+ 1

log2 αi

)σ

(f(log2 αi))
−1

≤ 2σC (log2 αi)
−1/p(f(log2 αi))

−1 = βi

for 0 ≤ i ≤ r. Furthermore, by the definition of m we obtain

2 βi
βi−1

= 2 m−1/p f(m
i−1 log2 n)

f(mi log2 n)
≤ 2 m−(1/p−σ) ≤ 1 .

Therefore, by Lemma 2.4 we can decompose T in

T = To +
r∑

i=1

Ti + S

and receive:

e2n(T ) ≤ en(To) + en(
r∑

i=1

Ti) + e1(S) . (3.3)

First we estimate the term en(To). By Lemma 2.4 the operator To is constructed by
a partition of unity (ψi) ⊂ C(K) of at most αo = n functions with

ε1(supp ψi) ≤ β−1 = 2σ C m1/p (log2 n)
−1/p (f(m−1 log2 n))

−1

≤ c1 C (log2 n)
−1/p (f(log2 n))

−1 ,

where c1 := 2σ m1/p+σ. Hence by Lemma 3.3 there exists a constant c2 such that

en(To) ≤ c2 ‖T‖1 C n−1/q (log2 n)
−1/p (f(log2 n))

−1

≤ c2 ‖T‖1 C n−1/q (log2 n)
−1/p+1/q (f(log2 n))

−1 .

Now we discuss e1(S). By Lemma 2.4 we know that

e1(S) ≤ 2 βr−1 ‖T‖1
= 21+σ C ‖T‖1 m

−1/p(r−1) (log2 n)
−1/p (f(mr−1 log2 n))

−1

≤ 21+σ C ‖T‖1 m
−1/p(r−1) (log2 n)

−1/p mσ(r−1) (f(log2 n))
−1

≤ c3 C ‖T‖1 n
−1/q (log2 n)

−1/p+1/q (f(log2 n))
−1 ,

where c3 := 21+σ m3(1/p−σ). Finally we estimate en(
r∑

i=1

Ti). For s :=
q

1+q
and suitable

c4, c5 ≥ 1 we obtain

39



n1/q en(
r∑

i=1

Ti)

≤ c4

(
r∑

i=1

(λ(e)q,∞(Ti))
s

)1/s

≤ c5 ‖T‖1

(
r∑

i=1

(
(log2 αi)

1/q βi−2

)s)1/s

= 2σ m2/p c5 ‖T‖1 C

(
r∑

i=1

(
m−i(1/p−1/q) (log2 n)

1/q−1/p(f(mi−2 log2 n))
−1
)s)1/s

.

The last sum can be estimated by(
r∑

i=1

(
m−i(1/p−1/q) (log2 n)

1/q−1/p(f(mi−2 log2 n))
−1
)s)1/s

≤ mσ (log2 n)
1/q−1/p

(
r∑

i=1

m−i(1/p−1/q)s (f(mi−1 log2 n))
−s

)1/s

≤ (log2 n)
1/q−1/p

(
r∑

i=1

(m−i(1/p−1/q−σ)s (f(log2 n))
−s

)1/s

≤ c6 (log2 n)
1/q−1/p (f(log2 n))

−1 ,

where c6 :=
(∑∞

i=1m
−i(1/p−1/q−σ)s

)1/s
. Hence we have proven

en(
r∑

i=1

Ti) ≤ c7 ‖T‖1 C n−1/q (log2 n)
1/q−1/p (f(log2 n))

−1

for some constant c7 > 0. Therefore we finally receive

n1/q(log2 n)
1/p−1/qf(log2 n) e2n(T ) ≤ c8 ‖T‖1 sup

k≤nγ log2(n+1)

k1/p f(k) ek(K)

for all n ≥ a and suitable c8 ≥ 1. For n ≤ a the assertion is trivial. J

3.3 The case of polynomial decay

In this section we will prove an inequality which corresponds with the remaining case
of essentially polynomial decay of (εn(K)). It complements the result of Carl, Heinrich
and Kühn described in the introduction.

40



Theorem 3.4 Let E be a Banach space of weak entropy cotype q, 2 ≤ q <∞. Then
for all p > 0 and γ ≥ 0 there exists a constant c ≥ 1, such that for all compact metric
spaces (K, d) and all 1-Hölder-continuous operators T : E → C(K) we have

sup
k≤n

k
1
p
+ 1

q (log2(k + 1))γ ek(T ) ≤ c cK ‖T‖1 sup
k≤n

1+
p
q

k
1
p (log2(k + 1))γ εk(K) .

We will see in Corollary 3.6 how this theorem can be applied in order to obtain good
estimates of (en(T )) whenever the sequence (εn(K)) decreases essentially polynomi-
ally. In Proposition 5.10 we show that these estimates are asymptotically optimal for
all Banach spaces which are not of better weak entropy cotype than q. Moreover, we
will prove in Proposition 5.5 that the above inequality characterizes Banach spaces of
weak entropy cotype q.
Before we prove Theorem 3.4, we remark that

n∑
i=1

i−b ea·i ≤ ea

a− b
(n+ 1)−b ea·n (3.4)

holds for all 0 < b < a and n ∈ N.

Proof of Theorem 3.4: Again it suffices to consider the case ε1(K) ≥ 1. For fixed
p > 0 and γ ≥ 0 we choose an integer a with a ≥ 2 + max{16q, 4p}. Then for a fixed
integer n ≥ a we define:

C := sup
j≤n

1+
p
q

j1/p (log2(j + 1))γ εj(K)

r := b(1/p+ 1/q) log2(n− 1)c − 3

L :=

⌊
1

p
log2(n− 1)

⌋
αi := b2(i+3)p + 1c for i = 0, . . . , r

βi := max{1, 1/pγ} C 2−(i+3) (i+ 3)−γ for i = −2, . . . , r .

Clearly, a ≤ n implies 1 ≤ L ≤ r. Furthermore, since αi ≤ n1+p/q, we obtain
εαi

(K) < βi for 0 ≤ i ≤ r. Hence we can decompose T by Lemma 2.4 into

T =
L−1∑
i=0

Ti +
r∑

i=L

Ti + S

and receive

en(T ) ≤ ebn
2
c(

L−1∑
i=0

Ti) + ebn
2
c(

r∑
i=L

Ti) + ‖S‖ . (3.5)
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Before estimating the terms of the right hand side of inequality (3.5), we observe that
4β−2 = 4 max{1, p−γ} C 2−1 ≥ 2 and thus ‖To‖ ≤ ‖T‖1 ≤ 4 β−2 ‖T‖1. Hence for
σ < q and 0 ≤ i ≤ r we obtain

‖Ti‖ α
1/σ−1/q
i ≤ 4 βi−2 ‖T‖1 b2(i+3)p + 1c1/σ−1/q

≤ c1 ‖T‖1 C (i+ 1)−γ 2(i+1)(p( 1
σ
− 1

q
)−1) , (3.6)

where c1 := 22+(2p+1)( 1
σ
− 1

q
)max{1, p−γ}.

To estimate the first term of inequality (3.5), we choose σ such that 1
σ
> ( γ

ln 2
+1)1

p
+ 1

q

and let s := σ
1+σ

. Then by our assumption on E and inequality (3.6) we obtain

⌊n
2

⌋1/σ
ebn

2
c(

L−1∑
i=0

Ti) ≤ c2

(
L−1∑
i=0

(
λ(e)σ,∞(Ti)

)s)1/s

≤ c2 c3

(
L−1∑
i=0

(
‖Ti‖α1/σ−1/q

i

)s)1/s

≤ c4 C ‖T‖1

(
L∑
i=1

i−γs 2is(p(
1
σ
− 1

q
)−1)

)1/s

(3.7)

for suitable c2, c3 ≥ 1 and c4 := c1 c2 c3. By inequality (3.4) there exists a constant
c5 > 0 such that we may conclude:

ebn
2
c(

L−1∑
i=0

Ti) ≤ 31/σ c4 C ‖T‖1 n
−1/σ

(
L∑
i=1

i−γs 2is(p(
1
σ
− 1

q
)−1)

)1/s

≤ 31/σ c4 c5 C ‖T‖1 n
−1/σ (L+ 1)−γ 2L (p( 1

σ
− 1

q
)−1)

≤ c6 C ‖T‖1 n
−1/σ

(
1

p
log2(n− 1)

)−γ

2
1
p
log2(n−1) (p( 1

σ
− 1

q
)−1)

≤ (4p)γ c6 C ‖T‖1 (log2(n+ 1))−γ n−1/p−1/q ,

where c6 := 31/σ c4 c5.
Next we estimate the second term of inequality (3.5). For some fixed σ < p with
1
σ
< 1

q
+ 1

p
and s := σ

1+σ
we get analogously to (3.7):

⌊n
2

⌋1/σ
ebn

2
c(

r∑
i=L

Ti) ≤ c7 C ‖T‖1

(
r∑

i=L

(i+ 1)−γs 2(i+1) s (p( 1
σ
− 1

q
)−1)

)1/s

,

where c7 > 0 is a suitable constant. Thus we obtain

ebn
2
c(

r∑
i=L

Ti) ≤ 31/σ c7 C ‖T‖1 n
−1/σ

(
r∑

i=L

(i+ 1)−γs 2(i+1) s (p( 1
σ
− 1

q
)−1)

)1/s

≤ c8 C ‖T‖1 n
−1/σ (L+ 1)−γ 2L (p( 1

σ
− 1

q
)−1)

≤ 21+1/p+2γ pγ c8 C ‖T‖1 (log2(n+ 1))−γ n−1/p−1/q
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for some constant c8 ≥ 1. Finally we consider the last term. By Lemma 2.4 we receive

‖S‖ ≤ 2 βr−1 ‖T‖1
≤ 23+γ max{1, p−γ} C ‖T‖1 (r + 4)−γ 2−(r+4)

≤ c9 C ‖T‖1 (log2(n+ 1))−γ n−1/p−1/q ,

where c9 := 23+1/p+1/q+3γ · (1/p + 1/q)−γ ·max{1, p−γ}. Combining the estimates we
easily get the assertion. J

3.4 Some consequences

We now want to illustrate how the proven inequalities can be used to obtain esti-
mates of (en(T )), if one has estimates for (εn(K)). We begin with the case of slowly
decreasing sequences (εn(K)):

Corollary 3.5 Let E be a Banach space of entropy cotype q, 2 ≤ q < ∞ and f be a
σ-controlled function. Then for all 0 < p ≤ ∞ with p 6= q, all compact metric spaces
(K, d) with

en(K) � n−1/p f(log2(n+ 1))

and all 1-Hölder-continuous operators T : E → C(K) we have

en(T ) � n−1/p f(log2(n+ 1))

in the case of q < p ≤ ∞ and

en(T ) � n−1/q (log2(n+ 1))1/q−1/p f(log2(log2(n+ 1) + 1))

in the case of 0 < p < q.
In particular, these estimates hold if f(t) = t±σ.

We will see in Proposition 5.8 that the first estimate is asymptotically optimal for
some 1-Hölder-continuous operator T : E → C(K) if q < p ≤ ∞. If E is not of
any entropy cotype q − ε, then it is also asymptotically optimal for some 1-Hölder-
continuous operator T : E → C(K) in the case of 0 < p < q. This will be shown in
Proposition 5.9.

Proof: Let c1 > 1 and g(t) := f(log2(c1t + 1)). Then one easily checks that g is
σ

ln c1
-controlled. Moreover we obtain

c−σ
1 f(log2(t+ 1)) ≤ g(t) ≤ cσ1 f(log2(t+ 1))

for all t ≥ 3. Hence if we choose c1 > 0 large enough, we can apply Theorem 3.2 to
prove the case 0 < p < q.
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To show the case q < p ≤ ∞ we choose c1 > 1 such that for τ := σ
ln c1

we have
1
p
+ τ < 1

q
. Moreover, we take p̃ ∈ (q,∞) such that 1

p̃
> 1

p
+ τ . Now by Theorem 3.1

we obtain

n
1
p̃ en(T ) ≤ c2 cK ‖T‖1 sup

k≤n
k

1
p̃ ek(K)

≤ ρ cσ1 c2 cK ‖T‖1 sup
k≤n

k
1
p̃
− 1

p g(k)

≤ ρ cσ1 c2 cK ‖T‖1 sup
k≤n

k
1
p̃
− 1

p

(n
k

)τ
g(n)

≤ ρ c2σ1 c2 cK ‖T‖1 n
1
p̃
− 1

p f(log2(n+ 1)) .J

If one has a compact metric space whose entropy numbers essentially decrease like
n−1/p, the following corollary can be applied. It complements results of [9] and [24].

Corollary 3.6 Let E be a Banach space of weak entropy cotype q, 2 ≤ q < ∞ and
f be a σ-controlled function. Then for all 0 < p < ∞ there is a constant c ≥ 1 such
that for all compact metric spaces (K, d) with

εn(K) ≤ ρ n−1/p f(log2(n+ 1)) , n ∈ N

and all 1-Hölder-continuous operators T : E → C(K) we have

en(T ) ≤ c ρ cK ‖T‖1 n
−1/p−1/q f(log2(n+ 1)) , n ∈ N.

In particular, this holds if f(t) = t±σ.

We will see in Proposition 5.10 that the above estimate is asymptotically optimal for
some 1-Hölder-continuous T : E → C(K) if E is not of any weak entropy cotype q−ε.

Proof: With the help of Theorem 3.4 we obtain

n
1
p
+ 1

q (log2(n+ 1))σ en(T )

≤ c1 · cK ‖T‖1 sup
k≤n

1+
p
q

k
1
p (log2(k + 1))σεk(K)

≤ ρ c1 · cK ‖T‖1 sup
k≤n

1+
p
q

(log2(k + 1))σf(log2(k + 1))

≤ ρ c2 · cK ‖T‖1 sup
k≤n

1+
p
q

(log2(k + 1))σ

(
log2((n+ 1)1+

p
q )

log2(k + 1)

)σ

f(log2((n+ 1)1+
p
q ))

≤ ρ c3 · cK ‖T‖1 (log2(n+ 1))σ f(log2(n+ 1)) .J

Examples of compact subsets K ⊂ Rn with

εn(K) ∼ n−1/p (log2(n+ 1))γ · . . .
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can be found in [13, Sect. 4]. Their construction is based on the idea used for the
Cantor set.

Remark 3.7 Corollary 3.6 states in particular that, given a compact metric space
(K, d) with (εn(K)) ∈ `p,∞ and a Banach spaces E of entropy cotype q, we have
(en(T )) ∈ `s,∞ for every 1-Hölder-continuous operator T : E → C(K) and 1/s :=
1/p + 1/q. But what happens if we have (εn(K)) ∈ `p,r ? A partial answer can be
given with Theorem 3.4:

Let E be a Banach space of weak entropy cotype q and let 0 < p, r < ∞. Then there
is a constant cp,r > 0 such that for every compact metric space (K, d) with

21/p en+1(K) ≤ en(K) , n ≥ 1 (3.8)

and all 1-Hölder-continuous operators T : E → C(K) we have

n∑
k=1

(
k1/p+1/q−1/r ek(T )

)r ≤ cp,r cK ‖T‖1
n1+p/q∑
k=1

(
k1/p−1/r εk(K)

)r
In particular, if (εn(K)) ∈ `p,r and condition (3.8) holds then (en(T )) ∈ `s,r with
1
s
= 1

p
+ 1

q
.

To see this we let an := n1/s en(T ) and sn := n1/p εn(K). Then for 0 < t < ∞ and
suitable constants c1, c2 > 0 we have

n1/t a2n = n1/t 2n/s e2n(T )

≤ c1 sup
k≤2n(1+p/q)

(log2(k + 1))1/t k1/p εk(K)

≤ c2 sup
k≤(1+p/q)n

k1/t 2k/p ε2k(K)

= c2 sup
k≤(1+p/q)n

k1/t s2k .

Now condition (3.8) guarantees that (s2k) is decreasing. Therefore we obtain

a2n ≤ c2

(∑(1+p/q)n
k=1 (s2k)

t

n

)1/t

. (3.9)

An easy modification of Hardy’s inequality (cf. [12, Lem. 1.5.3.]) together with the
argument used in the proof of [12, Th. 3.1.2.] yields

n∑
k=1

(a2k)
r ≤ c3

n1+p/q∑
k=1

(s2k)
r ,

but this is equivalent to the assertion.
We conjecture that condition (3.8) is superfluous. One might achieve this by proving
(3.9) directly.
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3.5 Some remarks and further generalizations

Remark 3.8 As mentioned in Remark 1.30, there is a constant c > 0 such that for
every operator T : H → `n∞ starting in a Hilbert space H we have

dk(T ) ≤ c

(
log2(

n
k
+ 1)

k

)1/2

‖T‖ , 1 ≤ k ≤ n .

In particular such estimates hold for the Tichomirov numbers tk(T ). Considering the
proofs of Theorems 3.1, 3.2 and 3.4, we also observe that we only used some of the
usual s-number properties of the entropy numbers plus their injectivity. Moreover,
for compact operators T : E → C(K) or T : E → `∞(A) the Tichomirov numbers
coincide with the Kolmogorov numbers (cf. [12, Th. 5.3.2.] and [12, Th. 2.2.1.,
Prop. 2.3.3. and (2.6.3.)]). Therefore we can restate Theorems 3.1, 3.2 and 3.4 using
Kolmogorov numbers instead of entropy numbers, if we start in a Hilbert space and
let q = 2.
Moreover, in the situation of Theorem 3.4 we can also employ estimate (1.2) while
repeating the proof carefully. We then obtain the following result:

Let E be an Lq-space for some 1 < q < ∞ and q∗ := max{q, q′}. Then for all p > 0
with 1

2
< 1

q∗
+ 1

p
and every γ ≥ 0 there exists a constant c ≥ 1, such that for all

compact metric spaces (K, d) and all 1-Hölder-continuous operators T : E → C(K)
we have

sup
k≤n

k
1
p
+ 1

q∗ (log2(k + 1))γ dk(T ) ≤ c cK ‖T‖1 sup

k≤n
1+

p
q∗

k
1
p (log2(k + 1))γ εk(K) .

In particular, if (K, d) is a metric space with εn(K) � n−1/p f(log(n + 1)) for some
real number 0 < p ≤ 2 and some σ-controlled function f , then for every 1-Hölder-
continuous operator T : E → `∞(K) starting in some Lq-space, 1 < q < ∞, we
have

dn(T ) � ‖T‖1 n
− 1

q∗−
1
p f(log2(n+ 1)) .

This can be especially applied for compact subsets K ⊂ R2.

It is an open problem to determine the behaviour of (en(T )) in the case of (en(K)) ∈
`q,∞ and T : E → C(K) being a 1-Hölder-continuous operator that starts in a Banach
space of entropy cotype q, i.e. in the limiting case p = q of Corollary 3.5. With the
proof of Theorem 3.1 we obtain

sup
k≤n

k1/q (log(k + 1))−(1+1/q) ek(T ) ≤ c cK ‖T‖1 sup
k≤n

k1/q ek(K) , (3.10)
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but we conjecture that the extra log-factor can be dropped. Moreover, if we know
that (en(K)) decreases slightly faster than n−1/q, say en(K) � n−1/q (log2(k + 1))−γ

for some γ > 1 + 1/q, we can apply

sup
k≤n

k
1
q (log2(log2(k + 1) + 1))γ−(1+ 1

q
) ek(T ) ≤ c cK ‖T‖1 sup

k≤n
k

1
q (log2(k + 1))γ ek(K)

which can be proven analogously to Theorem 3.2. In this case one can see, using
the techniques for Proposition 5.9, that this is asymptotically optimal apart from the

factor (log2(log2(k + 1) + 1))−(1+ 1
q
).

The theorems of this chapter are inspired by the work of Carl, Heinrich and Kühn in
[9], where a simpler form of Corollary 3.6 has been proven. They then applied their
result to certain integral operators defined by so-called Hölder-continuous kernels (cf.
[12, Ch. 5]). Eigenvalue estimates of such operators can be found in [20], [25] and
with some weaker condition on the kernel in [13].
Operators Tk : E → `∞(X) defined by so-called abstract kernels k : X → E ′, where
k is bounded (cf. [12, Ch. 5.13]), were considered by Edmunds and Carl in [8]. To
apply the results of [9] to such operators they defined a metric d on X such that
Tk became 1-Hölder-continuous. The entropy numbers of (X, d) then coincide with
those of im k. Therefore one can estimate the entropy numbers of Tk with the help
of those of im k. This idea was used in [18] firstly. We pick-up the idea of making
an operator 1-Hölder-continuous in Lemma 5.1 in order to show that every operator
T : E → F shares its entropy numbers with a suitable 1-Hölder-continuous operator
T : E → `∞(K).
Finally we wish to remark that Carl, Kyrezi and Pajor applied the result of [9] to
estimate the entropy numbers of a precompact, absolutely convex set in terms of the
entropy numbers of its extremal points. This will be done with our inequalities in the
following chapter.
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Chapter 4

Entropy of convex hulls

Given a precompact subset A of a Banach space E, we know that the absolutely
convex hull coA of A is again precompact. If we additionally know something about
the behaviour of (εn(A)), it is rather natural to ask for the behaviour of (en(coA)). If
we consider an arbitrary Banach space E, it was proved by Carl, Kyrezi and Pajor in
[10, Prop. 4.4] that for every precompact subset A ⊂ E and all 0 < p <∞

sup
k≤n

k1/p ek(coA) ≤ cp cA sup
k≤n

k1/p εk(A) (4.1)

hold, where cp > 0 is a constant only depending on p and

cA :=
‖A‖
ε1(A)

,

where ‖A‖ := supx∈A ‖x‖. Note that cA ≥ 1 in general and cA = 1, if A is symmetric,
i.e. A = −A.
However, if E is B-convex or even a Hilbert space, better estimates are known if
εk(A) � n−1/p or εk(A) � (log(n + 1))−1/p (cf. [16],[1],[7] and [10]). To prove the
case of polynomial decay, one can use the result of [9, Th. 1] on 1-Hölder-continuous
operators T : E → `∞(K) which motivated the work of the last chapter (cf. [7] and
[10]). Hence it seems to be a good idea to carry over the results of the last chapter
onto this problem. Therefore we consider the operator TA : `1(A) → E defined by
TA(et) := t on the canonical basis (et)t∈A of `1(A). Since coA = TA(B`1(A)) we have

en(TA) = en(coA) .

Moreover, T ′
A as an operator mapping E ′ into `∞(A) is 1-Hölder-continuous with

‖T ′
A‖1 = max{‖A‖ , 1}. Now the ansatz is simple: We use the inequalities of the

last chapter to estimate en(T
′
A) and then we apply the duality Theorem 1.18. These

scheme will be worked out in sections 4.1, 4.2 and 4.3.
As pointed out in Remark 3.8, Theorems 3.1, 3.2 and 3.4 also hold for the Kolmogorov
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numbers if E is a Hilbert space. Hence we also obtain estimates for the Gelfand widths
cn(coA) := cn(TA). Note that if A is finite and Eo := im TA, we have

cn(coA) = inf{diam (coA ∩ F ) : F ⊂ Eo subspace with dimF > dimEo − n } .

Hence cn(coA) measures the minimal diameter of m-dimensional, m ≥ dimEo−n+1,
slices of coA in this case. For this interpretation, we also refer to [28].
Moreover, we have to check that the resulting inequalities of our ansatz produce good,
i.e. asymptotically optimal estimates. For this we need a technique to construct
subsets for which we can control both (εn(A)) and (en(coA)). In the sequence spaces
`p this is no problem using the canonical basis of them, but what can be done in
general Banach spaces? It turns out that the idea of this construction in `p is in fact
of local nature, i.e. it also can be made in Banach spaces containing `np ’s uniformly.
This is the content of the first theorem:

Theorem 4.1 Let E be an infinite dimensional Banach space which uniformly con-
tains `np ’s for some 1 ≤ p < ∞ and let (an) be a regular sequence. Then there exists
a subset A of E and a constant c > 0 such that

εn(A) ∼ an

and for all n,m ∈ N we additionally have

en(coA) ≥ c am en(id : `m1 → `mp ) .

Proof: Let c1 be a constant such that an ≤ c1 a2n and am ≤ c1 an for all 1 ≤ n ≤ m.
Without loss of generality we may assume that E contains `np ’s 2-uniformly. Hence
for all n ≥ 0 there is a subspace En ⊂ E and an isomorphism Tn : En → `2

n

p with
‖Tn‖ = 1 and ‖T−1

n ‖ ≤ 2. Denoting by e1, . . . , e2n the canonical basis of `2
n

p we define

An := {a2n T−1
n ej | 1 ≤ j ≤ 2n} .

Moreover we let

A :=
∞⋃
n=0

An ∪ {0} .

We begin with the estimate of εn(A) from above. Let k := blog2 nc, i.e 2k ≤ n < 2k+1.
Hence we have εn(A) ≤ ε2k(A). To cover

⋃k−1
i=0 Ai we need at most

∑k−1
i=0 2

i = 2k − 1
balls of arbitrarily small diameter. For the remaining points

a2i T
−1
i ej ∈

∞⋃
i=k

Ai (1 ≤ j ≤ 2i)

we have ∥∥a2i T−1
i ej

∥∥ ≤ c1 a2k
∥∥T−1

i ej
∥∥ ≤ 2 c21 a2k+1 ≤ 2 c31 an .
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Therefore, we finally obtain εn(A) ≤ ε2k(A) ≤ 2 c31 an.
To estimate εn(A) from below we let k := blog2 nc again. Then, for 1 ≤ j1, j2 ≤ 2k+1

we have∥∥a2k+1 T−1
k+1ej1 − a2k+1 T−1

k+1ej2
∥∥ ≥ 1

c1
a2k ‖ej1 − ej2‖`2kp ≥ 21/p

c21
an .

Hence Ak+1 is a 21/p−1

c21
an−distant subset of Ak+1 ⊂ E consisting of 2k+1 > n points.

Therefore we finally obtain

εn(A) ≥ εn(Ak+1) ≥ 1

2 c21
an ,

where the inequality of the right hand side can be seen with the help of the inner
entropy numbers.
To prove the last inequality we let k := blog2mc and consider the operator D :
`2

k+1

1 → `2
k+1

p defined by ei 7→ a2k+1 ei. We have coAk+1 = T−1
k+1 D(B

`2
k+1

1
) and since

D = Tk+1 T
−1
k+1 D we obtain

en(coA) ≥ en(coAk+1)

≥ en(D)

= a2k+1 en(id : `2
k+1

1 → `2
k+1

p )

≥ 1

2 c1
a2k en(id : `m1 → `mp )

≥ 1

2 c21
am en(id : `m1 → `mp ) .J

4.1 The case of slow logarithmic decay

In this section we use Theorem 3.1 to estimate (en(coA)) in terms of (εn(A)). It
turns out that we obtain stronger consequences than one might expect considering
Corollary 3.5. Moreover, we start investigating the local structure of E in terms of
(entropy) type under the assumption of known entropy estimates. In particular we
are able to characterize B-convexity by the behaviour of entropy numbers of convex
hulls.

Theorem 4.2 Let E be a Banach space of entropy type q ∈ (1, 2]. Then for all
p ∈ (q′,∞) there exists a constant c ≥ 1, such that for all precompact A ⊂ E we have

sup
k≤n

k1/p ek(coA) ≤ c cA sup
k≤n

k1/p ek(A) .

If E is a Hilbert space and q = 2, this is also true for the Gelfand widths ck(coA).
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Proof: We consider the metric d(x, y) := 1
ε1(A)

‖x− y‖ on A. One easily checks

that en((A, d)) = 1
ε1(A)

en(A) and |T ′
A : E ′ → `∞((A, d))|1 = ε1(A). Hence we get

ε1((A, d)) = 1 and ‖T ′
A : E ′ → `∞((A, d))‖1 = ‖A‖. Moreover, E ′ is of entropy cotype

q′ and therefore by Theorem 1.18 and Theorem 3.1 we obtain

sup
k≤n

k1/p ek(coA) = sup
k≤n

k1/p ek(TA : `1(A) → E)

≤ c1 sup
k≤n

k1/p ek(T
′
A : E ′ → `∞(A))

= c1 sup
k≤n

k1/p ek(T
′
A : E ′ → `∞((A, d)))

≤ c2 cA sup
k≤n

k1/p ek(A)

for suitable constants c1, c2 ≥ 1. If E is a Hilbert space, the assertion for the Gelfand
widths follows from cn(TA) = dn(T

′
A) and Remark 3.8. J

Now we could prove a dual version of Corollary 3.5, but something more can be said.
Therefore we observe that in the situation of Theorem 4.2 we have

sup
k≤n

k1/pek(A) ≤ sup
k≤n

k1/pek(coA) � sup
k≤n

k1/pek(A)

and that in the Hilbert space case we have

sup
k≤n

k1/pek(A) ≤ sup
k≤n

k1/pek(coA) � sup
k≤n

k1/pck(coA) � sup
k≤n

k1/pek(A)

by Theorem 1.4. Hence, with the techniques used in the proof of Corollary 1.19 we
obtain:

Corollary 4.3 Let E be a Banach space of entropy type q ∈ (1, 2] and p ∈ (q′,∞). If
(an) is a regular sequence with an ≤ 21/pa2n, then for every precompact subset A ⊂ E
we have:

en(A) � an if and only if en(coA) � an

and
en(A) ∼ an if and only if en(coA) ∼ an .

If E is a Hilbert space, these statements are also equivalent to cn(coA) � an, respec-
tively cn(coA) ∼ an.

The above corollary states that in B−convex Banach spaces E the subsets A and
coA paradoxically have the same entropy behaviour whenever (en(A)) or (en(coA))
decreases ‘slowly’ in the above sense. This means that both sets have the same degree
of compactness in this case! This property is surprising and hard to understand since
A can be very small in comparison with coA as the following example illustrates:
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Example 4.4 Let A := {(log2(log2(n+ 1) + 1)−1 en | n ∈ N} be a subset of `p, 1 ≤ p ≤ 2.
Then one easily checks that

en(A) ∼ (log2(n+ 1))−1 .

Hence for 1 < p ≤ 2 we obtain by Corollary 4.3:

en(coA) ∼ (log2(n+ 1))−1 .

In contrast to this it was shown in [10] that in `1 we have

en(coA) ∼ (log2(log2(n+ 1) + 1)−1 .

Note that `p is B-convex for 1 < p ≤ 2 while `1 is not and that this B-convexity causes
the difference between the estimates for `p and `1 in the above example. However,
by Theorem 4.1 the construction of the set A can also be made for Banach spaces
containing `n1 ’s uniformly. Therefore we obtain the following characterization:

Theorem 4.5 The following statements on a Banach space E are equivalent:

i) E is not B-convex

ii) For all regular sequences (an) there is a subset A of E such that

εn(A) ∼ an ∼ en(coA) .

Proof: i) → ii): By Pisier’s characterization of B-convexity E contains `n1 ’s uniformly.
Hence by Theorem 4.1 we get a subset A of E such that εn(A) ∼ an and

en(coA) � an en(id : `n1 → `n1 ) � an .

The estimate en(coA) � an follows by [10, Prop. 4.5] or inequality (4.1).
ii) → i): Suppose that E is B-convex. We take an := (log2(log2(n + 1) + 1))−1 and
apply Corollary 4.3 to see that ii) does not hold. J

In particular Theorem 4.5 states that the estimates for en(coA) resulting from inequal-
ity (4.1) cannot be improved in non B-convex Banach spaces. However, to characterize
B-convexity it suffices to consider the sequence an := (log2(log2(n+1)+1))−1 in con-
dition ii). Several other types of regular sequences are also possible, e.g. an = n−1/p

or an = (log2(n+ 1))−1/p, as one can check with the results of the following sections.
Therefore, one might guess that condition ii) can be replaced by

ii’) There is a precompact subset A of E such that (εn(A)) is regular and

εn(A) ∼ en(coA) .

But condition ii′) does not characterize B-convexity as the following example shows:
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Example 4.6 Let E be an arbitrary Banach space and (an) be a regular sequence with
an ∼ a2n (cf. Example 1.3). Then there is a precompact subset A of E such that

εn(A) ∼ an ∼ en(coA) .

To see this we remember that E contains `n2 ’s uniformly by Dvoretzky’s Theorem. Therefore
by Theorem 4.1 we find a subset A of E with εn(A) ∼ an and

en(coA) ≥ c a2n en(id : `2
n

1 → `2
n

2 ) ≥ c a2n

(
log2(

2n

n + 1)

n

)1/2

� an .

To estimate en(coA) from above we use [10, Prop. 4.5] or inequality (4.1) to obtain
en(coA) � an.

Again we consider the phenomenon that in B-convex spaces the subsets A and coA
have the same entropy behaviour whenever one of them decreases ’slowly’. One might
ask whether such a phenomenon also exists in non B-convex spaces. Of course The-
orem 4.5 states that this cannot be true, e.g. for decay of iterated logarithmic type,
i.e. of type

(log(. . . log(n+ 1) + . . . ) + 1)−1/p .

However the following proposition shows that such a phenomenon indeed exists pro-
vided one considers ’very slowly’ decreasing sequences:

Proposition 4.7 Let E be an arbitrary Banach space and (an) be a regular sequence
with an ∼ a2n. Then for every precompact subset A ⊂ E we have:

en(A) � an if and only if en(coA) � an

and
en(A) ∼ an if and only if en(coA) ∼ an .

Proof: The first equivalence follows from [10, Prop. 4.5] or inequality (4.1) and the
trivial fact en(A) ≤ en(coA). For the second one we first assume en(A) ∼ an. Then
we already know en(coA) � an and trivially we also have en(coA) ≥ en(A) ∼ an. To
prove the converse implication we observe that en(coA) ∼ an implies:

sup
k≤n

k1/pεk(A) � sup
k≤n

k1/pek(coA) � sup
k≤n

k1/pεk(A) .

Then the trick used for Corollary 1.19 yields the assertion. J

Suppose now that we know for a given Banach space E that en(A) � n−1/p implies
en(coA) � n−1/p for every precompact subset A of E. Then Theorem 4.5 tells us that
E must be B-convex , i.e. of some type q > 1. The following proposition yields an
estimation of the type q that E is necessary to be of in this situation.
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Proposition 4.8 Let E be a Banach space such that for some 1 < q ≤ 2 and some
σ-controlled function f we know that

en(A) � n−(1−1/q) f(log2(n+ 1))

implies
en(coA) � n−(1−1/q) f(log2(n+ 1))

for all precompact subsets A of E. Then E must be of type r for all 1 < r < q.
If we additionally have f(x)

f(log2 x)
→ 0 for x→ ∞ and 1 < q < 2, then E is even of type

q + ε for some ε > 0.

Proof: Suppose that E is not of type r. Then E is not of stable type r and hence it
contains `nr ’s uniformly. We let an := (log2(n + 1))−(1−1/q) f(log2(log2(n + 1) + 1)).
Then by Example 1.2 and Theorem 4.1 we find a subset A of E such that εn(A) ∼ an.
With m = n and Theorem 1.6 we also obtain

en(coA) ≥ c1 an en(id : `n1 → `nr )

≥ c2 (log2(n+ 1))−(1−1/q) f(log2(log2(n+ 1) + 1)) n−(1− 1
r
) .

On the other hand we know

en(coA) ≤ c n−(1−1/q) f(log2(n+ 1))

by the assumption on E. But this gives a contradiction for large n since r < q.
Now we additionally suppose that f(x)

f(log2 x)
→ 0 for x→ ∞. By Theorem 1.14 it suffices

to prove that E is of stable type q. Let us assume that E is not, then analogously to
the above reasoning with q = r and the same sequence (an), we find a subset A of E
with εn(A) ∼ an and

en(coA) ≥ c1 an2 en(id : `n
2

1 → `n
2

q )

≥ c2 f(log2(log2(n
2 + 1) + 1)) n−(1− 1

q
) .

But since we also know en(coA) ≤ c n−(1−1/q) f(log2(n + 1)), we obtain a constant
c3 > 0 such that

f(log2(log2(n+ 1) + 1)) ≤
(
log2(log2(n

2 + 1) + 1)

log2(log2(n+ 1) + 1)

)σ

f(log2(log2(n
2 + 1) + 1))

≤ c3 f(log2(n+ 1)) ,

but this contradicts the assumption on f . J
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4.2 The case of fast logarithmic decay

We continue our programme estimating the entropy numbers of convex hulls with the
help of the inequalities of chapter 3. Our next aim is to give an analogue result to
Theorem 3.2 and Corollary 3.5, which cover the case of logarithmic decay with large
exponents. Moreover, we again investigate the local structure of Banach spaces in
terms of entropy estimates. We begin with:

Theorem 4.9 Let E be a Banach space of entropy type q ∈ (1, 2]. Then for all
p ∈ (0, q′) and all σ-controlled functions f : [0,∞) → (0,∞) with 0 < σ < 1

p
− 1

q′
there

exists a constant c ≥ 1 such that for all precompact A ⊂ E we have

sup
k≤n

k1/q
′
(log2(k + 1))1/p−1/q′f(log2(k + 1)) ek(coA) ≤ c cA sup

k≤an

k1/p f(k) ek(A) ,

where an := n
p

q′(1−pσ) log2(n+ 1).
If E is a Hilbert space and q = 2, this is also true for the Gelfand widths cn(coA).

Proof: We define Cn := supk≤an k
1/p f(k) ek(A). Using Theorem 3.2 we then obtain

analogously to Theorem 4.2:

n1/q′ (log2(n+ 1))1/p−1/q′ f(log2(n+ 1)) en(T
′
A : E ′ → `∞(A)) ≤ c1 cA Cn ,

where c1 > 0 is a suitable constant only depending on p, q, f and E. Thus, for
δ = 2/q′ + 1/p+ σ we receive

nδ en(coA)

≤ c2 sup
k≤n

kδ ek(T
′
A : E ′ → `∞(A))

≤ c3 cA sup
k≤n

kδ k−1/q′(log2(k + 1))1/q
′−1/p

f(log2(k + 1))
Ck

≤ c3 cA Cn
(log2(n+ 1))σ

f(log2(n+ 1))
sup
k≤n

kδ−1/q′ (log2(k + 1))1/q
′−1/p−σ

≤ c3 cA Cn n
δ−1/q′ (log2(n+ 1))1/q

′−1/p f(log2(n+ 1))−1 ,

where c2 is the constant appearing in Theorem 1.18 and c3 := c1 c2. Hence we have

n1/q′ (log2(n+ 1))1/p−1/q′ f(log2(n+ 1)) en(coA) ≤ c3 cA sup
k≤an

k1/p f(k) ek(A)

and this yields the assertion since (an) is increasing. J

As an easy consequence we get a dualized version of Corollary 3.5:
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Corollary 4.10 Let E be a Banach space of entropy type q ∈ (1, 2]. Moreover let
p ∈ (0, q′) and f : [0,∞) → (0,∞) be a σ-controlled function. Then for all precompact
subsets A of E with

en(A) � n−1/p f(log2(n+ 1))

we have

en(coA) � n−1/q′ (log2(n+ 1))1/q
′−1/p f(log2(log2(n+ 1) + 1)) .

This estimate is asymptotically optimal for some subset A whenever E is not of any
entropy type better than q.

Proof: The proof of the estimate is analogous to Corollary 3.5. For the optimality we
first observe that E cannot be of stable type q in the case of 1 < q < 2, since otherwise
E would be of some stable type q + ε and hence of entropy type q + ε. Therefore
E contains `nq ’s uniformly in this case. Moreover, if q = 2 we know by Dvoretzky’s
Theorem that E contains `nq ’s uniformly. Now we let

an := (log2(n+ 1))−1/p f(log2(log2(n+ 1) + 1)).

The sequence (an) is regular by Example 1.2. Hence by Theorem 4.1 we can find a
subset A ⊂ E such that εn(A) ∼ an and with the help of Theorem 1.6 we obtain

en(coA) ≥ c1 an2 en(id : `n
2

1 → `n
2

q )

≥ c2 an2

(
log2(n+ 1)

n

)1/q′

≥ c3 n
−1/q′ (log2(n+ 1))1/q

′−1/p f(log2(log2(n+ 1) + 1)) .

Therefore the estimate of the corollary is asymptotically optimal for A. J

If E is a Hilbert space and q = 2, the conclusion of the above corollary also holds
for the Gelfand widths cn(coA). Moreover, with a result of Garnaev and Gluskin in
[17] instead of Theorem 1.6 one can easily check that the resulting estimate is also
asymptotically optimal.
Again, we investigate the structure of E, if a conclusion analogous to the above
corollary holds. We obtain a result similar to Proposition 4.8:

Proposition 4.11 Let E be a Banach space such that for some 1 < q ≤ 2, 0 < p <∞
and some σ-controlled function f we know that

en(A) � n−1/p f(log2(n+ 1))

implies

en(coA) � n−(1−1/q) (log2(n+ 1))1−1/q−1/p f(log2(log2(n+ 1) + 1))

for all precompact subsets A of E. Then E must be of type r for all 1 < r < q.
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Proof: Suppose that E is not of type r. Then E is not of stable type r and hence it
contains `nr ’s uniformly. We let

an := (log2(n+ 1))−1/p f(log2(log2(n+ 1) + 1)) .

Then we know that (an) is regular by Example 1.2. Hence by Theorem 4.1 we can find
a subset A ⊂ E such that εn(A) ∼ an and with the help of Theorem 1.6 we obtain

en(coA) ≥ c1 an2 en(id : `n
2

1 → `n
2

r )

≥ c2 n
−(1−1/r) (log2(n+ 1))1−1/r−1/p f(log2(log2(n+ 1) + 1)) .

On the other hand we know

en(coA) ≤ c n−(1−1/q) (log2(n+ 1))1−1/q−1/p f(log2(log2(n+ 1) + 1))

by the assumption on E. But this is a contradiction for large n since r < q. J

Since there exist spaces of weak type q ∈ (1, 2) which are not of type q, we cannot
expect that E is even of type q under the assumption of Proposition 4.11. However,
it is not clear whether E must be of entropy type q or at least of weak type q in this
situation.

4.3 The case of polynomial decay

Continuing our program we finally apply Theorem 3.4, which covers the case of poly-
nomial decay. Again we also investigate the local structure of Banach spaces with the
help of estimates of entropy numbers of convex hulls receiving this time a characteri-
zation of weak type q spaces, 1 < q < 2. We begin with:

Theorem 4.12 Let E be a Banach space of weak entropy type q ∈ (1, 2] and 0 <
p < ∞ as well as γ ≥ 0. Then there is a constant c ≥ 1 such that for all precompact
A ⊂ E we have:

sup
k≤n

k1−1/q+1/p (log2(k + 1))γ ek(coA) ≤ c cA sup

k≤n
1+

p
q′

k1/p (log2(k + 1))γ εk(A) .

Proof: With the help of Theorem 3.4, the proof is a straightforward analogue to the
argument used for Theorem 4.10. J

Corollary 4.13 Let E be a Banach space of weak entropy type q, 1 < q ≤ 2. More-
over let p ∈ (0,∞) and f : [0,∞) → (0,∞) be a σ-controlled function. Then there is
a constant c > 0 such that for all precompact subsets A of E with

εn(A) ≤ n−1/p f(log2(n+ 1)) , n ∈ N
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we have
en(coA) ≤ c cA n−(1−1/q)−1/p f(log2(n+ 1)) , n ∈ N.

This estimate is asymptotically optimal for some subset A whenever E is not of any
weak entropy type better than q.

Proof: The proof of the estimate is analogous to Corollary 3.6. To see that this is
asymptotically optimal, we infer as for Corollary 4.10 that E contains `nq ’s uniformly.

Now we let an := n−1/p f(log2(n+ 1). Then the sequence (an) is regular by Example
1.2. Hence by Theorem 4.1 we can find a subset A ⊂ E such that εn(A) ∼ an, and
with the help of Theorem 1.6 we obtain

en(coA) ≥ c1 an en(id : `n1 → `nq )

≥ c2 n
−(1−1/q)−1/p f(log2(n+ 1)) .

Therefore the estimate of the corollary is asymptotically optimal for A. J

Again one can ask which local properties E must have, if the conclusion of Theorem
4.12, resp. Corollary 4.13 holds. This time it is necessary to take care of the arising
constant:

Proposition 4.14 Let E be a Banach space such that for some 1 < q ≤ 2, 0 < p <∞
and some σ-controlled function f we know that

εn(A) ≤ n−1/p f(log2(n+ 1)) , n ∈ N

implies
en(coA) ≤ c cA n−(1−1/q)−1/p f(log2(n+ 1)) , n ∈ N

for all precompact subsets A of E and a suitable constant c ≥ 1 independent of A and
n. Then E must be of weak type q.
If f is decreasing, then E is even of weak entropy type q.

Proof: Let T : `m1 → E be an arbitrary operator. We define xk := Tek for 1 ≤ k ≤ m
where (ek) is the canonical basis of `m1 . For A := {x1, . . . , xm} we have TB`m1

= coA
and ‖T‖ = ‖A‖. Moreover, we know εk(A) ≤ ε1(A) for 1 ≤ k ≤ m and εk(A) = 0
otherwise. Therefore with Cm := ε1(A) m

1/p (f(log2(m+ 1)))−1 we obtain

εn(A) ≤ n−1/p f(log2(n+ 1)) sup
k≥1

k1/p f(log2(k + 1))−1 εk(A)

≤ Cm n−1/p f(log2(n+ 1)) ,

for all n ≥ 1. Applying the assumption we get

en(T ) = Cm en(
1

Cm

coA)

≤ c Cm cA n−(1−1/q)−1/p f(log2(n+ 1))

≤ c ‖T‖ m1/p (f(log2(m+ 1)))−1 n−(1−1/q)−1/p f(log2(n+ 1)) .
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Then in the general case we take n = m and obtain that E is of weak type q by [22,
Th. 1] in the case of 1 < q < 2 and of weak type 2 by [32] in the case of q = 2. (cf.
[22, Rem. (2), p. 424]).
If f is decreasing, there is nothing more to prove. J

Corollary 4.13 together with Proposition 4.14 yields an interesting characterization of
weak type q, resp. weak entropy type q spaces:

Corollary 4.15 Let E be a Banach space and 1 < q ≤ 2. Then the following are
equivalent:

i) E is of weak entropy type q.

ii) For some or all p ∈ (0,∞) there exists a constant c > 0, such that for every
precompact symmetric subset A ⊂ E with εn(A) ≤ n−1/p, n ≥ 1, we have

en(coA) ≤ c · n−(1−1/q)−1/p , n ∈ N.

In particular this is equivalent to E being of weak type q in the case of 1 < q < 2.

4.4 Remarks

Remark 4.16 Theorem 4.12 and Corollary 4.13 also hold for the Gelfand widths
provided that E is a Hilbert space and q = 2. Moreover, we obtain a result analogously
to Remark 3.8:

Let E be a Lq-space for some 1 < q < ∞ and q∗ := max{q, q′}. Then for all p > 0
with 1

2
< 1

q∗
+ 1

p
and every γ ≥ 0 there is a constant c ≥ 1, such that for all precompact

subsets A of E we have

sup
k≤n

k
1
p
+ 1

q∗ (log2(k + 1))γ ck(coA) ≤ c cA ‖T‖1 sup

k≤n
1+

p
q∗

k
1
p (log2(k + 1))γ εk(A) .

To prove this we just have to carefully repeat the proof of Theorem 3.4 in a ’dual
version’ using inequality (1.1). As a direct consequence we obtain:

Let E be a Lq-space for some 1 < q < ∞ and q∗ := max{q, q′}. Moreover, let
p ∈ (0,∞) with 1

2
< 1

q∗
+ 1

p
and f be a σ-controlled function. Then for all precompact

subsets A of E with
εn(A) � n−1/p f(log2(n+ 1))

we have
cn(coA) � n−(1−1/q)−1/p f(log2(n+ 1)) .
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At least for 1 < q ≤ 2 and p and f as above this estimate is asymptotically optimal
for some corresponding subset A of E.

Note that the subset A for which the estimate is optimal can be constructed anal-
ogously to Corollary 4.13. To estimate cn(coA) from below we then use a result of
Garnaev and Gluskin on the behaviour of cn(id : `n1 → `np ), 1 < p ≤ 2, in [17].

Remark 4.17 Analogously to Remark 3.7 one might ask what happens for (en(coA)),
if we know that (εn(A)) ∈ `p,r. Again, we can only give a partial answer:

Let E be a Banach space of weak entropy type q and let 0 < p, r < ∞. Then there is
a constant cp,r > 0 such that for every precompact subset A of E with

21/p en+1(A) ≤ en(A) , n ≥ 1 (4.2)

we have

n∑
k=1

(
k1/p+(1−1/q)−1/r ek(coA)

)r ≤ cp,r cA

n1+p/q′∑
k=1

(
k1/p−1/r εk(A)

)r
.

In particular, (εn(A)) ∈ `p,r together with condition (4.2) implies (en(coA)) ∈ `s,r
where 1

s
= 1

p
+ 1− 1

q
.

The proof is based on Remark 3.7. If we consider subsets of the form A = { σnxn | n ∈
N } with (σn) decreasing and ‖xn‖ = 1 and additionally replace εn(A) by σn, we can
drop condition (4.2) using interpolation instead. For this we also refer to [5, Th. 1].

Remark 4.18 Let E be a Banach space of entropy type q and suppose that we have
a subset A of E with (en(A)) ∈ `q′,∞. In [10] Carl, Kyrezi and Pajor asked for an
asymptotically optimal estimate of (en(coA)). Using inequality (3.10) we obtain

sup
k≤n

k1/q
′
(log2(k + 1))−(1+1/q′) ek(coA) ≤ c cA sup

k≤n
k1/q

′
ek(A)

for every precompact subset A of E, but again we conjecture that one can drop the
extra log2-factor. Moreover, if we know that (en(K)) decreases slightly faster than
n−1/q′ , say en(K) � n−1/q′ (log2(k + 1))−γ for some γ > 1 + 1/q′, we can apply

sup
k≤n

k
1
q

′

(log2(log2(k + 1) + 1))γ−(1+ 1
q

′
) ek(coA) ≤ c cA sup

k≤n
k

1
q

′

(log2(k + 1))γ ek(A)

which can be derived analogously to Theorem 3.2. One easily checks that this is

asymptotically optimal apart from the factor (log2(log2(k + 1) + 1))−(1+ 1
q
). However,

an optimal result is still missing apart from the following estimate which is due to Li
and Linde in [28, Th. 5.1]:
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Let H be a Hilbert space and A = {x1, x2, . . . } be a countable subset of H with

‖xn‖ � (log2(n+ 1))−1/2 (log2(log2(n+ 1) + 1))γ .

Then we have

en(coA) �
{ n−1/2 (log2(n+ 1))γ if γ ≥ 0
n−1/2 (log2(log2(n+ 1) + 1))γ if γ < 0 .

Remark 4.19 It is an interesting phenomenon that covering properties of convex sets
characterize B-convexity and weak type since the latter ones are purely local proper-
ties while the considered convex sets cannot be reduced to finitely many dimensions
in general. In particular, this is true for Theorem 4.5, since subsets A with regular
sequences (en(coA)) do not span a finite dimensional subspace.
The nature of Corollary 4.15 is slightly different: Roughly speaking, it states that for
the definition of weak entropy type q, which is equivalent to weak type q for 1 < q < 2,
we can also use symmetric subsets A of E with εn(A) � n−1/p instead of finite subsets
A. Note that the former ones include the latter ones.

Remark 4.20 The problem of estimating en(coA) in terms of εn(A) was initially
considered by Dudley in [16]. He proved a weaker form of Corollary 4.13 for Hilbert
spaces and used it together with an entropy condition of Pollard to determine whether
a class of measurable functions is a universal Donsker class.
Ball and Pajor [1] as well as Carl [7] improved his result in the Hilbert space case.
The former ones also asked for inequalities between en(coA) and εn(A) which produce
both known and new results.
Finally, Carl, Kyrezi and Pajor [10] generalized the case of polynomial decay to Ba-
nach spaces of weak type q receiving a version of Corollary 4.13 without the factor
f(log2(n+1)). Moreover, they showed statements for εn(A) ≤ (log2(n+1))−1/p similar
to those of the Corollaries 4.3 and 4.10 and proved a version of inequality (4.1).
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Chapter 5

More on the entropy of
C(K)-valued operators and its
applications

The last chapter is devoted to three topics. Firstly, we investigate the local structure
of Banach spaces in terms of entropy estimates of 1-Hölder-continuous operators.
Moreover, we show that the inequalities of chapter 3 produce asymptotically optimal
results. For both we need the techniques used for similar questions in the previous
chapter.
The third aim is to give another application of Theorem 3.1: We show how the
Tichomirov numbers of a compact operator T : E → F can be estimated by its entropy
numbers provided that one of the spaces is a Hilbert space. Some remarks on the
duality problem of entropy numbers are added. The proof is based on the observation
that every compact operator T : E → F shares its entropy numbers with a suitable
1-Hölder-continuous operator S : E → `∞((K, d)) where K is essentially a subset of
BF ′ and the metric d is defined with the help of the dual operator T ′ : F ′ → E ′. This
is the major aim of the following lemma:

Lemma 5.1 Let T : E → `∞(A) be an arbitrary operator. Then there is an equiva-
lence relation ∼ on A, a metric d on K := A/∼ and a 1-Hölder-continuous operator
S : E → `∞(K, d) with |S|1 = 1 such that

i) ‖S‖ = ‖T‖ and sn(T ) ≤ sn(S) ≤ 2 sn(T ) for s ∈ {c, e, t} and all n ≥ 1.

ii) εn(K) = εn(({T ′es | s ∈ A}, ‖.‖)) for all n ≥ 1, where (es)s∈A is the canonical
basis of `1(A).

In particular if T is compact, then (K, d) is precompact.

Proof: We let s ∼ t if T ′es = T ′et and define d([s], [t]) := ‖T ′(es − et)‖ on K.
Clearly, d is a well-defined metric. For x ∈ E and s ∈ A we let Sx([s]) := Tx(s).

62



We observe that Sx([s]) = 〈x, T ′es〉, in particular S is well-defined and 1-Hölder-
continuous. Moreover, we let

I : `∞(K) → `∞(A)

f 7→ (s 7→ f([s])) .

Then one easily checks that I is a metric injection and T = IS. Therefore i) is proved.
To see ii) we observe that [s] 7→ T ′es is a bijective map between K and {T ′es | s ∈ A}
which preserves distances. J

5.1 On the local structure of Banach spaces in

terms of entropy estimates for C(K)-valued op-

erators

Similarly to chapter 4 we investigate the local structure of an arbitrary Banach space E
under the assumption of known estimates of entropy numbers of 1-Hölder-continuous
operators T : E → C(K). We begin with a characterization of B-convexity similar to
Theorem 4.5:

Theorem 5.2 The following statements on a Banach space E are equivalent:

i) E is not B-convex

ii) For all regular sequences (an) there exists a precompact metric space (K, d) and
a 1-Hölder-continuous operator T : E → `∞(K) with

εn(K) ∼ an ∼ en(T ) .

This Theorem in particular states that B-convex Banach spaces are the only ones for
which the estimate (3.1) can be improved. One might think that this theorem is a
direct consequence of Theorem 4.5. However, since there is no positive answer to the
duality problem of entropy numbers in non B-convex Banach spaces yet, we have to
repeat parts of the proof:

Proof: Suppose that E is B-convex. Let an := (log2(log2(n + 1) + 1))−1. Then
Corollary 3.5 tells us that for every precompact metric space (K, d) with εn(K) ∼ an
and all 1-Hölder-continuous operators T : E → `∞(K) we have en(T ) � a2n . Hence
ii) does not hold.
Now suppose E is not B-convex. Then E ′ is not B-convex either and therefore it
contains `n1 ’s uniformly by Pisier’s Theorem. Hence without loss of generality there
are subspaces En ⊂ E ′ and isomorphisms Tn : En → `2

n

1 with ‖Tn‖ = 1 and ‖T−1
n ‖ ≤ 2.
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Let In be the embedding of En into E ′. Denoting by e
(n)
1 , . . . , e

(n)
2n the canonical basis

of `2
n

1 we define

An := {a2n InT−1
n e

(n)
j | 1 ≤ j ≤ 2n} .

Moreover we let

A :=
∞⋃
n=0

An ∪ {0} .

Since this is exactly the same construction used in the proof of Theorem 4.1, we
already know εn(A) ∼ an. With the help of the operator TA : `1(A) → E ′ defined by
TAet := t on the canonical basis of `1(A), we let T := (T ′

A)|E : E → `∞(A). Then
T is 1-Hölder-continuous and by inequality (3.1) we already know en(T ) � an. To
estimate from below, we also need the projections

Pn : `∞(A) → `2
n

∞

f 7→ (f(a2nInT
−1
n e

(n)
1 ), . . . , f(a2nInT

−1
n e

(n)
2n )) .

Then for x ∈ E, 1 ≤ i ≤ 2n and t := a2nInT
−1
n e

(n)
i we have

〈PnTx, e
(n)
i 〉 = 〈Tx, et〉 = 〈x, TAet〉 = a2n〈x, InT−1

n e
(n)
i 〉 = a2n〈(InT−1

n )′x, e
(n)
i 〉 ,

i.e. PnT = a2n((InT
−1
n )′)|E. Moreover, (I ′n)|E is a metric surjection and (TnT

−1
n )′ =

id`2n∞ . Hence for k := blog2 nc we obtain

en(T ) ≥ en(Pk+1T )

= a2k+1 en((T
−1
k+1)

′)

≥ a2k+1 en(id : `2
k+1

∞ → `2
k+1

∞ )

≥ c an ,

where c > 0 is a suitable constant independent of n. J

Analogously to Theorem 4.5 we cannot simplify condition ii) to

ii’) There is a compact metric space (K, d) and a 1-Hölder-continuous operator
T : E → C(K) such that (εn(K)) is regular and

εn(K) ∼ en(T ) .

The construction of a counterexample is analogous to example 4.6, therefore we drop
it.
We now investigate the local structure of a Banach space E under the assumption of
known estimates for 1-Hölder-continuous operators T : E → C(K). The results are
similar to the analogue considerations of the previous chapter. We begin with:
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Proposition 5.3 Let E be a Banach space such that for some 2 ≤ q <∞ and some
σ-controlled function f we know that for every precompact metric space (K, d) with

en(K) � n−1/q f(log2(n+ 1))

we have
en(T ) � n−1/q f(log2(n+ 1))

for all 1-Hölder-continuous operators T : E → `∞(K). Then E must be B-convex
and of cotype r for all q < r <∞.
If we additionally have f(x)

f(log2 x)
→ 0 for x → ∞ and 2 < q < ∞, then E is even of

cotype r for some 2 < r < q.

Proof: First of all we observe that E is B-convex by Theorem 5.2. Now let A be a
precompact subset of E ′ with

en(A) ≤ n−1/q f(log2(n+ 1)) .

The operator T ′
A : E ′′ → `∞(A) is 1-Hölder-continuous. Moreover, for the operator

S := (T ′
A)|E : E → `∞(A) we have (S ′)|`1(A) = TA since

〈S ′y, x〉 = 〈y, Sx〉 = 〈y, (T ′
A)|Ex〉 = 〈y, T ′

Ax〉 = 〈TAy, x〉

for all y ∈ `1(A) and x ∈ E. Now our assumption applied to S yields

en(S) ≤ c n−1/q f(log2(n+ 1)) .

Hence with the help of Corollary 1.19, we find a constant c1 ≥ 1 such that we finally
obtain

en(coA) = en(TA) = en((S
′)`1(A)) ≤ en(S

′) ≤ c1 n
−1/q f(log2(n+ 1)) .

But then Proposition 4.8 tells us that E ′ must be of entropy type r for all 1 < r < q′,
resp. for some q′ < r < 2, and therefore we get the assertions by Proposition 1.27. J

With the same arguments we obtain a dualized version of Proposition 4.11:

Proposition 5.4 Let E be a Banach space such that for some 2 ≤ q <∞, 0 < p <∞
and some σ-controlled function f we know that for every precompact metric space
(K, d) with

en(K) � n−1/p f(log2(n+ 1))

we have

en(T ) � n−1/q (log2(n+ 1))1/q−1/p f(log2(log2(n+ 1) + 1))

for all 1-Hölder-continuous operators T : E → `∞(K). Then E must be B-convex
and of cotype r for all q < r <∞.
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In the case of polynomial decay we are also able to give a dualized version of Propo-
sition 4.14, but this time we need some further work for the proof:

Proposition 5.5 Let E be a Banach space such that for some 2 ≤ q <∞, 0 < p <∞
and some σ-controlled function f we know that for every precompact metric space
(K, d) with

εn(K) ≤ ρ n−1/p f(log2(n+ 1)) , n ∈ N

we have
en(T ) ≤ c ρ cK ‖T‖1 n

−1/q−1/p f(log2(n+ 1)) , n ∈ N

for all 1-Hölder-continuous operators T : E → `∞(K) and a suitable constant c ≥ 1
independent of K, T and n. Then E is B-convex and of weak cotype q.
If f is monotonously decreasing then E is even of weak entropy cotype q.

Proof: First of all we observe that E is B-convex by Theorem 5.2. Now we take an
arbitrary subset A = {x1, . . . , xm} of E ′. Without loss of generality we may assume
‖A‖ = 1. For the operator T := (T ′

A)|E : E → `m∞ we then have ‖T‖ = 1 and T ′ = TA.
By Lemma 5.1 we find a 1-Hölder-continuous operator S : E → `∞(K) with ‖S‖1 = 1
and en(T ) ≤ en(S). Additionally, we know

ε1(K) ≤ 2 ‖T‖ = 2

and |K| ≤ m. In particular we have εk(K) = 0 for all k > m. Moreover there is a
constant c > 0 such that

εn(K) ≤ n−1/p f(log2(n+ 1)) sup
k≥1

k1/p f(log2(k + 1))−1 εk(K)

≤ c ε1(K) m1/p f(log2(m+ 1))−1 n−1/p f(log2(n+ 1))

and therefore our assumption yields

em(T ) ≤ em(S)

≤ c cK ε1(K) ‖S‖1 m
1/p f(log2(m+ 1))−1 n−1/q−1/p f(log2(n+ 1))

≤ 2 c ‖T‖ m1/p f(log2(m+ 1))−1 n−1/q−1/p f(log2(n+ 1)) .

Hence with Theorem 1.18 we obtain

em(coA) = em(T
′)

≤ c1 ‖T‖ m1/p f(log2(m+ 1))−1 n−1/q−1/p f(log2(n+ 1))

for some constant c1 > 0 independent of A, m and n. Then in the general case we take
n = m and obtain that E ′ is of weak type q′ by [22, Th. 1] in the case of 2 < q < ∞
and of weak type 2 by [32] in the case of q = 2 (cf. [22, Rem. (2), p. 424]). If f
is decreasing, E ′ is of weak entropy cotype q′. In both cases this is equivalent to the
assertion. J
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Remark 5.6 For the proof of Proposition 5.4 we can also use the idea of the above
proposition, if we take care of the constants arising in the estimates of the assumption.
But in this case we only obtain

en(TA) ≤ c n−1/q (log2(n+ 1))1/q ‖T‖ ,

which indicates that the result of Proposition 5.4 might be the best possible. Estimat-
ing en(TA) with the help of the assumptions of Proposition 5.3 one even gets worse
inequalities. Therefore in this case the corresponding result may also be the best.

Corollary 3.6 together with Proposition 5.5 yields an interesting characterization of
Banach spaces having weak entropy cotype q, resp. weak cotype q. Note that the
following corollary also clarifies the ’local estimate’ used in [12, Th. 5.10.1.] for
q ∈ (1, 2).

Corollary 5.7 Let E be a Banach space and 2 ≤ q < ∞. Then the following are
equivalent:

i) E is of weak entropy cotype q.

ii) For some or all p ∈ (0,∞) there exists a constant c > 0 such that for all compact
metric spaces (K, d) with ε1(K) = 1 and εn(K) ≤ n−1/p we have

en(T ) ≤ c · ‖T‖1 · n
−(1−1/q)−1/p

for all 1-Hölder-continuous operators T : E → C(K).

In particular this is equivalent to E being B-convex and of weak cotype q in the case
of 2 < q <∞.

5.2 On the optimality of the estimates proved in

chapter 3

In this section we show that the estimates of the Corollaries 3.5 and 3.6 cannot
be asymptotically improved under natural conditions on the domain E. Although
the proofs are straightforward modifications of corresponding results in the previous
chapter, we have to reason carefully since we need to estimate en(T ) from below with
the help of known (en(T

′)). We begin with the case of ’essentially slow logarithmic
decay’:

Proposition 5.8 Let E be an infinite dimensional Banach space of entropy cotype
q ∈ [2,∞). Moreover let q < p ≤ ∞ and f be a σ-controlled function. Then there is
a precompact metric space (A, d) with

en(A) ∼ n−1/p f(log2(n+ 1))
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and a 1-Hölder-continuous operator T : E → `∞(A) with

en(T ) ∼ n−1/p f(log2(n+ 1)) .

In particular this is true if E is a Lq̃-space, 1 < q̃ <∞ and q = max{2, q̃}.

Proof: Since E ′ contains `n2 ’s uniformly by Dvoretzky’s Theorem, we can construct a
precompact subset A of E ′ with

en(A) ∼ n−1/p f(log2(n+ 1))

using the idea of Theorem 4.1. Then Corollary 4.3 tells us that

en(coA) ∼ n−1/p f(log2(n+ 1)) .

Now we consider the operator T := (T ′
A)|E : E → `∞(A) analogously to Proposition

5.3. Since en(TA) ∼ n−1/p f(log2(n+ 1)) we first have

en(T ) = en((T
′
A)|E) ≤ en(T

′
A) ∼ n−1/p f(log2(n+ 1))

by Corollary 1.19. Hence we get en(T
′) � n−1/p f(log2(n+ 1)) by the same corollary.

Moreover we have

n−1/p f(log2(n+ 1)) ∼ en(TA) = en(T
′
|`1(A)) ≤ en(T

′)

and therefore we know en(T
′) ∼ n−1/p f(log2(n + 1)). But then Corollary 1.19 tells

us that
en(T ) ∼ n−1/p f(log2(n+ 1)) . J

For the case of essentially fast logarithmic decay we have a similar result. However,
we have to ensure that the known entropy cotype of the domain is best possible:

Proposition 5.9 Let E be a Banach space of entropy cotype q ∈ [2,∞), which is not
of any entropy cotype q− ε. Moreover let 0 < p < q and f be a σ-controlled function.
Then there is a precompact metric space (A, d) with

en(A) ∼ n−1/p f(log2(n+ 1))

and a 1-Hölder-continuous operator T : E → `∞(A) with

en(T ) ∼ n−1/q (log2(n+ 1))1/q−1/p f(log2(log2(n+ 1) + 1)) .

In particular this is true if E is a Lq̃-space, 1 < q̃ <∞ and q = max{2, q̃}.
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Proof: By Proposition 1.27 the dual E ′ is of entropy type q′ but not of any entropy
type r > q′. Therefore by Corollary 4.10 there is a subset A of E ′ with

en(A) ∼ n−1/p f(log2(n+ 1))

and
en(coA) ∼ n−1/q (log2(n+ 1))1/q−1/p f(log2(log2(n+ 1) + 1)) .

Now we obtain the assertion by the same reason as in Proposition 5.3. J

Analogously, we obtain that the estimate of Corollary 3.6 yields asymptotically opti-
mal estimates.

Proposition 5.10 Let E be a Banach space of weak entropy cotype q ∈ [2,∞) which
is not of any weak entropy cotype q − ε. Moreover let 0 < p < ∞ and f be a σ-
controlled function. Then there is a precompact metric space (A, d) with

εn(A) ∼ n−1/p f(log2(n+ 1))

and a 1-Hölder-continuous operator T : E → `∞(A) with

en(T ) ∼ n−1/p−1/q f(log2(n+ 1)) .

In particular this is true if E is a Lq̃-space, 1 < q̃ <∞ and q = max{2, q̃}.

Remark 5.11 The propositions of this section construct a suitable precompact met-
ric space for which there is a 1-Hölder-continuous operator such that the estimates
are asymptotically optimal. It is also interesting, whether there is such an operator
if we fix both E and (A, d).

5.3 An inverse Carl-inequality

In this last section we prove an ’inverse’ form of Theorem 1.4 for compact operators
T : E → F provided that one of the spaces is a Hilbert space. Using Lemma 5.1 it
turns out that this is a direct consequence of Theorem 3.1 and Remark 3.8.

Theorem 5.12 Let E and F be Banach spaces and one of them a Hilbert space.
Then for every 2 < p <∞ there exists a constant cp > 1 such that for every compact
operator T : E → F we have

1

cp
sup
k≤n

k1/p ek(T ) ≤ sup
k≤n

k1/p tk(T ) ≤ cp sup
k≤n

k1/p ek(T ) .
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Proof: First we assume that E is a Hilbert space. We consider the operator S := IT ,
where I : F → `∞(BF ′) denotes the canonical injection. By Lemma 5.1 there is a
precompact metric space K and a 1-Hölder-continuous operator R : E → `∞(K) with

tn(S) ≤ tn(R) ≤ 2 tn(S) .

Moreover we have

en(K) = en({S ′ey′ y
′ ∈ BF ′}) = en(T

′I ′) = en(T
′) .

Therefore we obtain by Remark 3.8 and Theorem 1.18:

sup
k≤n

k1/p tk(T ) ≤ sup
k≤n

k1/p tk(R)

≤ c sup
k≤n

k1/p ek(K)

≤ c̃p sup
k≤n

k1/p ek(T ) .

The inverse inequality follows by Theorem 1.4.
If F is a Hilbert space, we consider the operator S := IT ′ where I : E ′ → `∞(BE) is
the canonical injection. Repeating the above proof we are now using tn(T ) = tn(T

′)
instead of Theorem 1.18. J

As an example of the consequences of the above theorem we obtain:

Corollary 5.13 Let H be a Hilbert space, p ∈ (2,∞) and (an) be a regular sequence
with an ≤ 21/pa2n. Then for every finite measure µ and every compact operator
T : H → L∞(µ) we have

dn(T ) � an if and only if en(T ) � an

and
dn(T ) ∼ an if and only if en(T ) ∼ an .

This is also true for every compact operator T : L1(µ) → H, if we replace the Kol-
mogorov numbers by the Gelfand numbers.

Proof: Since L∞(µ) has the extension property (cf. [15, Th. 4.14]), we have dn(T ) =
tn(T ) by [12, Prop. 2.3.3.]. Hence using the trick of Corollary 1.19, we obtain the
assertion.
If we consider an operator T : L1(µ) → H we use cn(T ) = dn(T

′ : H → L∞(µ)) and
Corollary 1.19. J

Remark 5.14 There is a similar result to Theorem 5.12 proven by Pajor and
Tomczak-Jaegermann in [33]:
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Let E be a Banach space and H be a Hilbert space. Then for every p ∈ (0, 2) there is
a constant cp > 1 such that for every compact operator T : E → H we have

1

cp
sup
k≥1

k1/p ek(T ) ≤ sup
k≥1

k1/p ck(T ) ≤ cp sup
k≥1

k1/p ek(T ) .

Note that this inequality compares Gelfand numbers instead of Tichomirov numbers
with entropy numbers. Hence this result is stronger in that sense. However, they
compared suprema build by the whole sequences (cn(T )) and (en(T )), while we have
compared finitely many Tichomirov numbers with finitely many entropy numbers.
Therefore our result yields much more information on the asymptotic behaviour of
the involved sequences. Corollary 5.13 illustrates this.
Another similar result was shown by Carl in [6]:

Let E be a Banach space of type 2 and F be a Banach space such that F ′ is also of
type 2. Then for all 0 < p <∞ and every compact operator T : E → F we have

sup
k≤n

k1/p ek(T ) ∼ sup
k≤n

k1/p ck(T ) ∼ sup
k≤n

k1/p dk(T ) .

Remark 5.15 Another idea to apply Theorem 3.1 is to use it in the original form.
We then estimate en(T ) by some en(T

′) and conversely. More precisely we obtain:

Let F ′ be a Banach space of entropy cotype q. Then for every q < p <∞ there exists
a constant cp such that for every compact operator T : E → F we have

sup
k≤n

k1/p ek(T
′) ≤ cp sup

k≤n
k1/p ek(T ) .

and

Let E be a Banach space of entropy cotype q. Then for every q < p <∞ there exists
a constant cp such that for every compact operator T : E → F we have

sup
k≤n

k1/p ek(T ) ≤ cp sup
k≤n

k1/p ek(T
′) .

However, there are two disadvantages of this ansatz: First of all, nontrivial entropy
cotype implies B-convexity. Hence the above statements are covered by Theorem
1.18. Moreover, the common way to show that a Banach space is of entropy cotype q
is to check that its dual is of (weak) type q′ and then to apply Theorem 1.23 together
with Proposition 1.27. But the latter one is based on Theorem 1.18!
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continuous kernels on metric compacta, Indagationes Math. 49 (1987), 51-61

[26] M. Ledoux and M. Talagrand, Probability in Banach spaces, Springer,
Berlin, 1991

[27] D.R. Lewis, Finite dimensional subspaces of Lp, Studia Math. 63 (1978), 207-
212

73



[28] W.V. Li and W. Linde, Metric Entropy of Convex Hulls in Hilbert spaces,
Studia Math., to appear

[29] J. Lindenstrauss and L. Tzafriri, “Classical Banach Spaces”, Vol. I and II,
Springer, Berlin, 1977/79

[30] V. Mascioni, Weak cotype and weak type in the local theory of Banach spaces,
Note di Matematica 8 (1988), 67-110

[31] A. Pietsch, “Eigenvalues and s-numbers”, Cambridge Univ. Press, Lon-
don/New York, 1985

[32] A. Pajor, Quotient volumique et espaces de Banach de type 2 faible, Israel J.
Math. 57 (1987), 101-106

[33] A. Pajor and N. Tomczak-Jaegermann, Remarques sur les nombres d’en-
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teurs a valeurs dans un espace de Hilbert, C. R. Acad. Sci. Paris, Ser. I 305
(1987), 299-301

[39] D. Werner, Funktionalanalysis, Springer, Berlin, 1995

[40] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Univ. Press, Lon-
don/New York, 1991

74
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