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Abstract

Data-dependent, margin-based bounds play an important role in the theoretical analysis of support
vector machines (SVM’s) for classification. Although existing bounds are usually too large for real-
world sample sizes it is often claimed that at least for large sample sizes these bounds can justify
the support vector machine approach. The aim of this work is to investigate whether such claims
are well-founded. In doing so, it turns out that in the presence of noise many of the known bounds
cannot predict well—neither for small nor for large sample sizes. Our analysis is mainly based on
two results that describe the margin deviation of SVM decision functions on the training set.

These results are also used for a consideration on sparsity-based bounds. Here we demonstrate
that one of the sharpest known bounds cannot be used to explain the generalization performance
of SVM’s, neither.

⋆ Research was supported by the DFG grant Ca 179/4-1.



1 Introduction

Given a training set T and a decision function fT constructed by a classifier C one of the most
important questions is how accurately fT fits to the underlying probability measure P from which
T was drawn. Unfortunately, a uniform estimate of the risk of fT cannot exists in general. To
overcome this problem one often tries to collect some additional information during or after the
training process about how fT fits to the training set T . Typical examples of such measures are
training errors, margin errors, margin deviations, or sparseness of fT . Once the information is
collected it is used in specific estimates on the risk of fT . If we are lucky in the sense that fT fits
well to T with respect to our measure the used estimates reflect this by predicting a small risk
of fT . The underlying hope of this approach—the so-called luckiness framework (cf. [12])—is that
most of the considered classification problems have a benign distribution and this can be observed
by the behaviour of fT on T for a suitable measure, the so-called luckiness function.

Among the most successful algorithms in recent years are support vector machines (SVM’s)
which are based on a (regularized) maximization of margins in a Hilbert space. Thus, it seems
natural to use the margin distribution of fT on T in order to bound the risk of fT . Typical
estimates of this type can be found e.g. in [11] and [6, Ch. 4]. Because of the intimate relation
between the optimization problem on the one hand and the structure of these estimates on the
other hand these results have conversely been used to explain the generalization ability of SVM’s
(cf. [6, Ch. 4]). Using recent results on the asymptotic behavior of the regularized risks optimized
by SVM’s as well as some simple but important examples we show that this explanation cannot
work in almost any interesting case. One of the reasons of this phenomenon is that the known
bounds do not reflect the margin distribution which SVM solutions tend to have. Moreover, we
also consider a bound which is based on the fraction of γ-margin errors. Here we show that this
bound cannot justify SVM’s which approximately try to achieve a target margin for a large subset
of samples, neither. This consideration is based on a deep result on the asymptotic behaviour of
SVM decision functions (cf. Theorem 1) which is also interesting in its own.

Since the decision function of an SVM only depends on the support vectors, SVM’s can also
be interpreted as a compression scheme. This has been used to bound the expected error of SVM
decision functions in terms of their sparseness (cf. e.g. [6, Ch. 4] and [15]). Using the asymptotic
results we mentioned above we show that recently found bounds always tend to predict badly for
SVM’s and noisy classification problems.

2 Preliminaries

In the following (X, τ) is a compact topological T2-space with countable basis. Recall, that closed,
bounded subsets of Rd are typical examples for such spaces. Moreover, let Y := {−1, 1}. This set
is always assumed to be equipped with the discrete topology.

For a (positive definite) kernel k : X × X → R we denote the corresponding RKHS (cf. [4,
Ch. 3]) byHk or simply byH . We write BH for its closed unit ball. Recall, that the map Φ : X → H ,

x 7→ k(x, .) fulfills k(., .) = 〈Φ(.), Φ(.)〉H. We will sometimes use the quantity K := sup{
√

k(x, x) :
x ∈ X}. Note, that KBH is the smallest ball in H centered at the origin that contains the image
of X under Φ. Moreover, k is continuous if and only if Φ is. In this case H can be continuously
embedded into the space of all continuous functions C(X) via Iw := 〈w, Φ(.)〉H. Since we only
consider continuous kernels we often identify elements of H as continuous functions on X . If the
embedding I : H → C(X) has a dense image we call k a universal kernel (cf. [16, Sect. 3]). In
order to consider smooth kernels on bounded C∞-domains X ⊂ R

d (cf. [20, Sect. 3.2]) we write
C∞,∞(X ×X) for the space of all functions f : X ×X → R for which

∂|α1|+|α2|

∂α1∂α2

f

exists and is continuous for all α1, α2 ∈ N
d
0 (cf. [10, p.40]).

For a given Borel probability measure P on X × Y there exists a map x 7→ P ( . |x) from X
into the set of all probability measures on Y such that P is the joint distribution of (P ( . |x))x
and of the marginal distribution PX of P on X (cf. [8, Lem. 1.2.1.]). We call P ( . |.), which is
in fact a regular conditional probability, the supervisor. Moreover, we often need the noise level
s(x) := min{P (1|x), P (−1|x)} of P which describes how noisy the output of the supervisor is.



A classifier is an algorithm that constructs to every training set T = ((x1, y1), . . . , (xn, yn)) ∈
(X × Y )n a decision function fT : X → Y . In our context it is always assumed that T is i.i.d. ac-
cording to P , which itself is unknown. Then the decision function fT : X → Y constructed by
the classifier should guarantee a small probability for the misclassification of an example (x, y)
randomly generated according to P . Here, misclassification means f(x) 6= y. To make this precise,
the risk of a measurable function f : X → Y is defined by

RP (f) := P
(

{(x, y) : f(x) 6= y}
)

.

If f is a real valued measurable function we write RP (f) := RP (sign ◦f) for short. The smallest
achievable risk RP := inf{RP (f) : f : X → Y measurable} is called (optimal) Bayes risk.

In order to state bounds on RP (fT ) we need some further risk notions: for γ > 0 and t ∈ R the
γ-loss function is defined by Lγ(t) := max{0, γ − t}. Given p ∈ {0, 1, 2} and a Borel probability
measure P on X × Y we define the (p, γ)-risk of a measurable function f : X → R by

Rp,γ,P (f) := E(x,y)∼PL
p
γ(yf(x)) ,

where 00 := 0. The smallest (p, γ)-risk is denoted by Rp,γ,P := inf
{

Rp,γ,P (f) | f : X →
R measurable

}

. For p ∈ {1, 2}, γ > 0 and α ∈ [0, 1] we also define

f ∗
p,γ(α) := argmin

t∈R
αLp

γ(1, t) + (1− α)Lp
γ(−1, t) . (1)

Note, that f ∗
p,γ(α) is uniquely determined for all α 6∈ {0, 1/2, 1}. In particular we have f ∗

1,γ(α) = −γ
if 0 < α < 1/2 and f ∗

1,γ(α) = γ if 1/2 < α < 1 as well as f ∗
2,γ(α) = γ(2α− 1) for all α ∈ [0, 1]. The

main purpose of f ∗
p,γ is that it can be used to construct functions that minimize the (p, γ)-risk.

Indeed, we have Rp,γ,P = Rp,γ,P

(

f ∗
p,γ(P (1|.))

)

for all p ∈ {1, 2}, γ > 0 and every Borel probability
measure P on X × Y . Given a positive definite and continuous kernel with corresponding RKHS
H the regularized (p, γ)-risk is defined by

Rreg

p,γ,P,λ(f) := λ ‖f‖2H +Rp,γ,P (f)

for all functions f ∈ H and all λ > 0. If γ = 1 we usually omit this index. The unique function
(cf. [18]) that minimizes Rreg

p,γ,P,λ(.) is denoted by fp,γ,P,λ, or briefly fP,λ. If P is an empirical

measure with respect to T ∈ (X × Y )n we write R̂T (f), R̂p,γ,T (f), R̂
reg

p,γ,T,λ(f), fp,γ,T,λ and fT,λ,
respectively.

In this work we consider SVM’s. Recall, that these algorithms minimize R̂reg

p,1,T,λ, i.e. they solve
the optimization problem

min
f∈H

λ ‖f‖2H +
1

n

n
∑

i=1

Lp
1

(

yif(xi)
)

, (2)

where T =
(

(x1, y1), . . . , (xn, yn)
)

∈ (X × Y )n and p ∈ {1, 2}. The SVM classifier that constructs
the decision function sign ◦fp,1,T,λ is called p-norm soft margin classifier (p-SMC).

Finally, for positive sequences (an) and (bn) we write an � bn if there exists a constant c > 0
such that an ≤ c bn for all n ≥ 1. Moreover, an ∼ bn means that both an � bn and bn � an hold.

3 Some results on the distribution of the margin deviations

In this section we present two results concerning the distribution of the margin errors for large
sample sizes. These results will play the key role in our analysis of existing generalization bounds.
For this purpose we write X̂ := X̂P := {x ∈ X : P (1|x) 6= 1/2} for a given Borel probability
measure P on X × Y . Moreover, let

|y − y′|γ :=







|y − y′| if −γ < y′ < γ

γ − y if y′ ≥ γ

y + γ if y′ ≤ −γ

for y, y′ ∈ R and γ > 0. Finally for f : X → R and ε > 0, p ∈ {1, 2}, γ > 0 we define

Eε(f) := Eε,p,γ,P (f) :=
{

x ∈ X̂ :
∣

∣f(x)− f ∗
p,γ(P (1|x))

∣

∣

γ
≥ ε
}

Now, our first result which is the main tool in our further considerations reads as follows:



Theorem 1. Let P be a Borel probability measure on X × Y and k a universal kernel on X.
Moreover, let ε, δ, γ > 0, p ∈ {1, 2} and (λn) be a positive sequence with λn → 0 and λp+1

n n → ∞.
Then for n → ∞ we have

P n
(

T = ((x1, y1), . . . , (xn, yn)) :
∣

∣{i : xi ∈ Eε,p,γ,P (fp,γ,T,λn
)}
∣

∣ ≤ δn
)

→ 1.

Roughly speaking, this theorem states that for large samples sizes fp,γ,T,λn
(xi) typically equals

f ∗
p,γ(P (1|xi)) up to ε for the overwhelming majority of samples. In particular, we obtain information
about the margin distribution using the specific form of f ∗

p,γ(P (1|.)) for p = 1, 2. Since the proof is
rather technical and uses some aspects from functional analysis it is worked out in the last section.

Our second results concerns the distribution of R̂p,γ,T (fp,γ,T,λ):

Theorem 2. Let P be a Borel probability measure on X × Y and k a continuous kernel on X.
Moreover, let ε, γ > 0, p ∈ {1, 2} and (λn) be a positive sequence with λn → 0 and λ2p

n n → ∞.
Then for n → ∞ we have

P n
(

T ∈ (X × Y )n : R̂p,γ,T (fp,γ,T,λn
) ≥ Rp,γ,P − ε

)

→ 1.

The condition λ2p
n n → ∞ can be weakened if the kernel k fulfills suitable smoothness assumptions.

E.g., for C∞-kernels we only need λp+δ
n n → ∞ for an arbitrary small δ > 0. For details we refer

to the proof in the last section and [17].

4 Asymptotical treatment of margin-based bounds

One of the first ideas to explain the generalization performance of SVM’s was to use the results of
Vapnik and Chervonenkis which estimate RP (fT ) in terms of R̂T (fT ) and the VC-dimension of the
class of functions fT has been chosen from (usually 1√

λ
BH). Apart from the structural problems

concerning the used inductive principle (cf. [2] and [12]) this approach cannot work in general since
function classes induced by good, i.e. universal, kernels have infinite VC-dimension whenever X
is infinite. One typical approach to avoid this problem is to introduce a target margin γ > 0.
Then some results estimate RP (fT ) under the condition R̂0,γ,T (fT ) = 0 (cf. [12] and [6, Ch. 4]).
Since this is not a realistic assumption for p-SMC’s and noisy problems we do not consider these
bounds (cf. also [3]). In order to treat outliers other estimates bound RP (fT ) by R̂0,γ,T (fT ) and
a probabilistic term that depends on quantities like the fat-shattering dimension. Such a result
which is often referred to is the following due Bartlett (cf. [1]):

Theorem 3. Let k be a kernel with RKHS H, 0 < δ < 1/2, 0 < γ < 1 and λ > 0. Then for all
Borel probability measures P on X × Y and all n ≥ 1 we have

P n
(

T : RP (f) ≤ R̂0,γ,T (f) + εn(δ, λ, γ,K) for all f ∈ 1√
λ
BH

)

≥ 1− δ,

where εn(δ, λ, γ,K) :=

√

512K2

λγ2n
ln
(

17eλγ2n
128K2

)

log2(578n) +
2
n
ln 4

δ
.

It is possible to replace εn(δ, λ, γ,K) by an (often) smaller quantity that also depends on the
observation in terms of the empirical fat-shattering dimension (cf. [9]). However, in this work we

are mainly interested in the prediction term R̂0,γ,T (f). If λ tends slowly to 0 for increasing n, say
λn � n−1/5 the term εn(δ, λn, γ,K) also tends to 0. Moreover, for universal kernels the p-SMC,
p ∈ {1, 2} is universally consistent in this case (cf. [17]), i.e. we have RP (fp,1,T,λ|T |

) → RP in

probability for every P . Thus, in order to use Theorem 3 we should be sure that R̂0,γ,T (fT ) also
approximates RP since otherwise the estimate becomes useless. Unfortunately, it turns out that
such an approximation does not take place in general.

We begin with a result that states a lower (asymptotic) bound on the fraction of γ-margin
errors for 2-SMC decision functions. In particular it yields that for all γ > 0 we may construct
sufficiently noisy distributions such that Theorem 3 only gives useless bounds for the 2-SMC.



Theorem 4. Let 0 < γ ≤ 1, ε > 0 and P be a Borel probability measure on X × Y . We define
Aγ := {x ∈ X : s(x) > (1 − γ)/2}, where s denotes the noise level of P . Then for all universal
kernels k on X and all positive sequences (λn) with λ → 0 and λ3

nn → ∞ we have:

lim
n→∞

P n
(

T ∈ (X × Y )n : R̂0,γ,T (f2,1,T,λn
) ≥

∫

Aγ

(1− s) dPX +RP − ε
)

= 1 .

Proof. Due to space limitations we only sketch the proof. We define Bγ := {x ∈ X : s(x) ≤
(1−γ)/2} and fix a δ with 0 < δ < γ and PX(Aγ−δ) ≥ PX(Aγ)−ε. Now, we only consider training
sets T = ((x1, y1), . . . , (xn, yn)) such that there are at least n(PX(Aγ−δ)−ε) samples in Aγ−δ and at
least n

( ∫

Bγ
s dPX −ε

)

samples xi ∈ Bγ with “wrong” label yi. Here, “wrong” means that yi = 1 if

P (1|xi) < 1/2 or yi = −1 if P (−1|xi) < 1/2, respectively. Clearly, the probability of such training
sets converges to 1. Moreover, let us additionally assume that our considered training set T fulfills
∣

∣{i : xi ∈ Eδ/2,2,1,P (fT,λn
)}
∣

∣ ≤ εn. Theorem 1 guarantees, that the probability of such training
sets still converges to 1. Our assumptions on T yields that there are at least n(PX(Aγ−δ) − 2ε)
samples in Aγ−δ with

∣

∣|fT,λn
(xi)|−(1−2s(xi))

∣

∣ < δ/2. Obviously, all these samples cause γ-margin

errors. Moreover, T has also at least n
( ∫

Bγ
s dPX − 2ε

)

samples xi ∈ Bγ with “wrong” label yi

and
∣

∣fT,λn
(xi)− (1−2s(xi))

∣

∣ < δ/2. Again, these samples cause γ-margin errors. Summing up the
considered samples yields

R̂0,γ,T (fT ) ≥ PX(Aγ−δ) +

∫

Bγ

s dPX − 4ε =

∫

Aγ

(1− s) dPX +RP − 5ε . ⊓⊔

We like to point out, that the probabilities of the above proposition usually tend significantly
faster to 1 than the probabilities of Theorem 3. Hence, for sufficiently noisy problems either the
probabilistic term of Theorem 3 (for small sample sizes) or the predictive term R̂0,γ,T (fT ) (for
large sample sizes) is is too large for meaningful bounds. Note, that this type of argument is also
used in the following.

The next proposition shows that the predictions for the 2-SMC made by Theorem 3 can be
trivial for very simple distributions and for all sequences (λn). The proof can be found in the last
section.

Proposition 1. Let 0 < γ < 1, X := {−1, 1} and P the probability measure on X×Y defined by
PX(1) = PX(−1) = 1/2 and P (1|1) = P (−1| − 1) = p for some fixed p with 1/2 < p < (1 + γ)/2.
Moreover, let k(x, x′) := x · x′. Then for all positive sequences (λn) we have

P n
(

T ∈ (X × Y )n : R̂0,γ,T (f2,1,T,λn
) = 1

)

→ 1 .

The importance of the above example lies in the fact that it is one of the easiest noisy classifica-
tion problems. Thus, a good margin bound on the generalization error should certainly produce
estimates that are sufficiently close to the Bayes risk, at least for specific choices of λn.

The arguments of the proof of Theorem 4 can also be used to consider the 1-SMC in view of
the asymptotic behaviour of R̂0,γ,T (f1,1,T,λn

). In doing so, it turns out that R̂0,γ,T (f1,1,T,λn
) tends

to be in [RP ,RP + 1
2
PX(X \ X̂)]. The following proposition shows that this is optimal, i.e. there

actually exist distributions for which the worst case R̂0,γ,T (fT ) → RP + 1
2
PX(X \ X̂) holds. Again,

the proof can be found in the last section.

Proposition 2. Let X := {0, 1} and P be a probability measure on X × Y with P (1|0) =
P (−1|0) =: p+0 and p+1 := P (1|1) > P (−1|1) := p−1 . Moreover, let k be the kernel on X de-
fined by k(x, x′) := 1 if x = x′ and k(x, x′) := 0 otherwise. Finally, let (λn) be a positive sequence
with λn → 0 and λ2

nn → ∞. Then for all 0 < γ < 1 and all ε > 0 we have

P n
(

T ∈ (X × Y )n : R̂0,γ,T (f1,1,T,λn
) ≥ RP +

1

2
PX(X \ X̂)− ε

)

→ 1 .

The above results show that in general the fraction of γ-margin errors is not suitable to bound
the risk of SVM decision functions: for the 2-SMC it turned out that regions with large noise
level cause bad predictions. Therefore, results like Theorem 3 cannot explain the generalization



ability of the 2-SMC. For the 1-SMC the predictions made by R̂0,γ,T (f1,1,T,λn
) are optimal up to

1
2
PX(X \ X̂). Although the latter quantity may be large for general distributions we suppose that

for most of the real-world problems it is small. Therefore, the main problem for explaining the
generalization ability of the 1-SMC by Theorem 3 is certainly the bad behaviour of the probabilistic
term εn(δ, λ, γ,K).

Another approach in order to justify SVM’s is measuring the average deviations from the target
margin instead of counting margin errors. Typical examples of such estimates bound RP (fT ) in

terms of R̂reg

p,γ,T (fT ) or R̂
reg

p,γ,T (fT ), p ∈ {1, 2}. We will consider a representative result of [11] (cf. also
[6, Ch. 4]). In order to state it for a given kernel k let

F (T, f, λ) :=
64.5

(

1 + K2

nλ

)

R̂reg

2,T,λ(f)

8e
,

where T ∈ (X × Y )n is a training set, f is an element of the RKHS H associated to k and λ > 0.
Moreover, we define

H(t) := t log2(1/t)1[0,1/8](t) +
3

8
1(1/8,∞)(t) .

Note, that H : [0,∞) → R
+ is an increasing and uniformly continuous function. Now the result

of [11] reads as follows:

Theorem 5. Let (λn) be a positive sequence and P be a Borel probability measure on X × Y .
Then for all sufficiently large n we have

P n
(

T : RP (f) ≤ 16eH(F (T, f, λn)) log2(32n) + ε for all f ∈ H
)

≥ 1− 8n2−
εn
2 .

Note, that in order to have a simple result we only consider the theorem of [11] for γ = 1. However,
all our results also hold for the general case γ > 0 by a simple rescaling argument. Furthermore,
there exists a similar result bounding RP (f) in terms of R̂reg

1,γ,T (f) (cf. [6, Thm. 4.24]) for which
our analysis also holds.

Since H(F (T, f, λ)) is minimal if f is the function f2,1,T,λn
constructed by the 2-SMC the above

theorem seems to justify this algorithm. As already mentioned above it was shown in [17] that
the 2-SMC is universally consistent provided that a universal kernel is used and λn tends slowly
to 0. The next proposition shows that for noisy problems 16eH(F (T, fT , λn)) log2(32n) → ∞ in
probability if such a slowly decreasing parameter sequence is used. In other words the prediction
for RP (fT ) made by Theorem 5 becomes trivial for large sample sizes.

Proposition 3. Let k be a continuous kernel on X and (λn) be a positive null sequence with
λ4
nn → ∞. Then we have

P n
(

T ∈ (X × Y )n : F (T, f2,1,T,λn
, λn) ≥

64.5

8e
R2,P − ε

)

→ 1

for all Borel probability measures P on X ×Y and all ε > 0. If k ∈ C∞,∞(X ×X) this even holds
if we only have λ2+δ

n n → ∞ for some δ > 0.

Proof. The assertion is a direct consequence of Theorem 2 and the definition of F (T, fT , λn). ⊓⊔
What does happen for other regularization sequences? For example, it is known (cf. [16]) that the
2-SMC with universal kernel and λn → 0 is also consistent for all noiseless classification problems
that ensure a strictly positive margin. If we additionally know λn(log n)

2 → 0 then Theorem 5
also implies this result. However, the following examples demonstrate that even for very simple
distributions which do not guarantee these restrictive assumptions the estimate of Theorem 5 does
not provide any information:

Proposition 4. Let X := {−1, 1} and P the probability measure on X × Y defined by PX(1) =
PX(−1) = 1/2 and P (1|1) = P (−1| − 1) = p for some fixed p ∈ (1/2, 1). Moreover, let k(x, x′) :=
x · x′. Then there exists a constant c > 0 such that for all positive sequences (λn) we have

P n
(

T ∈ (X × Y )n : F (T, f2,1,T,λn
, λn) ≥ c

)

→ 1 .



Note, that due to the symmetry of P the assertion of the above example also holds for universal
kernels. Again, the importance of the above example lies in the fact that it is one of the easiest noisy
classification problems. Thus, a good margin bound on the generalization error should certainly
produce estimates that are sufficiently close to the Bayes risk, at least for specific choices of λn. The
next example shows that Theorem 5 does not provide any information for noiseless distributions
which are concentrated around the decision boundary, either:

Proposition 5. Let X := [−1, 1] and P be a probability measure on X × Y such that h(t) :=
PX([−t, 0]) = PX([0, t]) fulfills

h

(
√√

ln t/t

)

∼ 1/
√
ln t

for t → ∞. Furthermore, assume that P (−1|x) = P (1| − x) = 0 for all x ∈ [0, 1] and let
k(x, x′) := x · x′. Then for all positive sequences (λn) there exists a constant c > 0 such that we
have

P n

(

T ∈ (X × Y )n : F (T, f2,1,T,λn
, λn) ≥

c√
lnn

)

→ 1 .

Proposition 3 and the above examples may suggest that both the large constants and the logarith-
mic terms in Theorem 5 cause its bad prediction performance. In other words one might expect
that an estimate of the form

P n
(

T : RP (f2,1,T,λ) ≤ c R̂2,T (f2,1,T,λ) + εn(λ, δ)
)

≥ 1− δ , (3)

where c > 0 is a small universal constant would predict well. However, an easy argument shows
that we necessarily have c ≥ 1. Choosing a universal kernel and a regularization sequence (λn)
with λn → 0 and λ4

nn → ∞ the results in [17] yield

R̂2,T (f2,1,T,λn
) → R2,P = 4

∫

X

s(1− s) dPX

in probability. Moreover, we haveRP =
∫

X
s dPX and thus R̂2,T (f2,1,T,λn

) tends to be in [2RP , 4RP ]
for large sample sizes. In other words, an estimate of the form (3) for the 2-SMC can only yield good

predictions for almost noiseless distributions. Even worse, replacing R̂2,T (f2,1,T,λn
) by another risk

functional of f2,1,T,λn
does not solve the problem: since f2,1,T,λn

tends to 2P (1|.)−1 the only suitable

risk functional is R̂T (f) :=
∑|T |

i=1 1{yif(xi)≤0}. Unfortunately, in order to show that |R̂T (f2,1,T,λ)−
RP (f2,1,T,λ)| → 0 holds uniformly and distribution independent a finite VC-dimension of F :=
{f2,1,T,λ : T ∈ (X×Y )n, n ∈ N} is necessary by the classical VC-theory (cf. [21]) but F has infinite
VC-dimension for universal kernels on infinite sets X (cf. the construction in [16, Thm. 18]).

What does happen for the 1-SMC? Since f1,1,T,λn
tends to f ∗

1,1(P (1|.)) many of the above prob-
lems does not occur. Actually, there exists good bounds on RP (f1,1,T,λn

) with a small probabilistic

term which are sharp up to 1
2
PX(X̂). Due to space limitations we do not go into details but refer

to [5] for the most recent results.

5 Asymptotical treatment of sparsity-based bounds

Another kind of data-dependent bounds on the generalization performance of SVM’s are based
on sparsity properties. Roughly speaking, the idea of these bounds is that the decision functions
of SVM’s only depend on the support vectors and thus SVM’s are a kind of compression scheme.
This is exploited in order to prove bounds which seem to have small probabilistic terms. In this
section we show that the typical compression rate for SVM’s on noisy distributions behaves like
c n, where the factor c depends on the noise of the problem. We will see that for the known bounds
this is too bad in order to guarantee good estimates.

One of the sharpest sparsity-based bounds have been proved very recently in [15]. In order to
formulate it let Sp,λ(T ) denote the number of support vectors of the function fp,1,T,λ for p = 1, 2
and λ > 0. Now, the result reads as follows:



Theorem 6. Let P be a Borel probability measure on X × Y , p ∈ {1, 2} and δ > 0. Then for all
n ≥ 1 and all λ > 0 we have

P n

(

T : RP (fp,1,T,λ) < 1−
((

n

Sp,λ(T )

)

· n(n + 1)

2δ

)− 1
n−Sp,λ(T )

)

≥ 1− δ .

In order to investigate whether this bound yields sharp results it is necessary to know how much
support vectors fp,1,T,λ typically have. Recall that every sample for which the decision function
makes a 1-margin error is a support vector. Therefore we immediately find by Theorem 4 the
following important result which states that the 2-SMC is not sparse classifier for a large class of
distributions:

Theorem 7. Let P be a Borel probability measure on X × Y . We write R := PX

(

x : s(x) >

0
)

, where s denotes the noise level of P . Moreover, let k be a universal kernel and (λn) be a
regularization sequence with λn → 0 and λ3

nn → ∞. Then for all ε > 0 we have

P n
(

T ∈ (X × Y )n : S2,λn
(T ) ≥ n(R− ε)

)

→ 1 .

With the help of this theorem we can now estimate the probabilistic term of Theorem 6. Indeed,
let n and k be natural numbers with k > n. We define ρ := k/n. Recall, that Stirling’s formula
yields

(

n

k

)

=
1√
2π

√

n

k(n− k)

nn

kk(n− k)n−k
exp

(

θ(n)

12n
− θ(k)

12k
− θ(n− k)

12(n− k)

)

,

where θ is a suitable function with 0 < θ(m) < 1 for all m ∈ N. Using k = ρn we find

(

n

k

)

≥ ρ−ρn(1− ρ)−(1−ρ)n

4
√

ρ(1− ρ)n

and this yields

1−
((

n

k

)

· n(n + 1)

2δ

)− 1
n−k

≥ 1− ρ
ρ

1−ρ (1− ρ)

(

8δ
√

ρ(1 − ρ)√
n(n + 1)

)
1

(1−ρ)n

≥ 1− ρ
ρ

1−ρ (1− ρ)

for all δ ∈ (0, 1] and all n ≥ 2. Since ρ 7→ 1− ρ
ρ

1−ρ (1− ρ) is increasing and continuous on [0, 1] we
obtain by Theoren 7:

Proposition 6. Let P be a Borel probability measure on X × Y . We write R := PX

(

x : s(x) >

0
)

, where s denotes the noise level of P . Moreover, let k be a universal kernel and (λn) be a
regularization sequence with λn → 0 and λ3

nn → ∞. Then for all ε > 0 and all δ ∈ (0, 1] we have

P n

(

T : 1−
((

n

S2,λn
(T )

)

· n(n + 1)

2δ

)− 1
n−S2,λn

(T )

≥ 1−R
R

1−R (1−R)− ε

)

→ 1.

Since 2RP ≤ R and 1 − (2ρ)
2ρ

1−2ρ (1 − 2ρ) ≥ 2ρ for all ρ ∈ [0, 1/2] we find by Proposition 6 that
for large sample sizes the prediction of Theorem 6 is typically not smaller than 2RP . If the Bayes
risk is small or R/RP is large its prediction is even significantly worse (cf. Table 1).

By Theorem 3 we obtain that for large samples sizes the fraction of support vectors of the
1-SMC is typically not smaller than the Bayes risk. Using the above considerations we hence find:

Proposition 7. Let P be a Borel probability measure on X × Y , k be a universal kernel on X
and (λn) be a positive sequence with λn → 0 and λnn

log(λnn) logn
→ ∞. Then for all ε > 0, δ ∈ (0, 1]

we have

P n

(

T : 1−
((

n

S1,λn
(T )

)

· n(n+ 1)

2δ

)
−1

n−S1,λn
(T )

≥ 1−R
RP

1−RP

P (1−RP )− ε

)

→ 1.



An easy computation shows 1 − ρ
ρ

1−ρ (1 − ρ) ≥ 1.5ρ for all 0 ≤ ρ ≤ 1/2 and thus the predictions
made by Theorem 6 are typically not smaller than 1.5RP . Again, if the Bayes risk is small the
factor is significantly larger (cf. Table 1).

Finally, we like to mention that we suppose, that the fraction of support vectors tends to be
not smaller than 2RP (at least for a large class of distributions): recall that the 1-SMC and the
ν-SVM are equivalent, i.e. they produce exactly the same set of decision functions. Moreover,
under some regularity conditions on P and k the parameter ν is the limit of the fraction support
vectors (cf. [14] and [13]). Finally, it was shown in [19] that a good choice of ν is close to 2RP .
Unfortunately, it is unknown whether smaller values of ν also produce asymptotically almost
optimal results.
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Table 1. Left: Behaviour of ρ 7→ 1−(2ρ)
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6 Proofs

Proof of Theorem 1. By [17, Prop. 3.2] we have Rreg

p,γ,P,λn
(fP,λn

) → Rp,γ,P for n → ∞ and thus

lim
n→∞

Rp,γ,P (fP,λn
) = Rp,γ,P . (4)

Furthermore, for E := Eε,p,γ,P (fP,λn
) we find

Rp,γ,P (fP,λn
) ≥

∫

X\E

∫

Y

Lp
γ

(

y, f ∗
p,γ(P (1|x))

)

P (dy|x)PX(dx) +

∫

E

∫

Y

Lp
γ(y, f(x))P (dy|x)PX(dx)

=Rp,γ,P +

∫

E

∫

Y

(

Lp
γ(y, f(x))− Lp

γ

(

y, f ∗
p,γ(P (1|x))

)

)

P (dy|x)PX(dx)

≥Rp,γ,P +

∫

E

∆(x)PX(dx) ,

where we have defined

∆(x) := min







∫

Y

Lp
γ(y, y

′)P (dy|x) : y′ ∈ R with
∣

∣y′ − f ∗
p,γ(P (1|x))

∣

∣

γ
≥ ε







−
∫

Y

Lp
γ

(

y, f ∗
p,γ(P (1|x))

)

P (dy|x) .

By the definition of |. − .|γ we get ∆(x) > 0 for all x ∈ X̂ . Hence the measures PX and ∆dPX

both restricted to X̂ are absolutely continuous to each other. This together with (4) yields

lim
n→∞

PX

(

Eε(fP,λn
)
)

= 0

for all ε > 0. In particular, there exists an n0 ∈ N such that for all n ≥ n0 we have
PX

(

Eε/2(fP,λn
)
)

≤ δ/2. This implies

P n
(

T = ((x1, y1), . . . , (xn, yn)) :
∣

∣{i : xi ∈ Eε/2(fP,λn
)}
∣

∣ ≤ δn
)

→ 1 (5)



for n → ∞ by Hoeffding’s inequality. An easy calculation shows that Eε(fT,λn
) ⊂ Eε/2(fP,λn

)
whenever ‖fT,λn

− fP,λn
‖ ≤ ε/2. The latter typically holds for large sample sizes: indeed, in

[18, Thm. 1.2] it was shown that there exists a measurable function h : X × Y → R with
‖h‖∞ ≤ |Lp

γ|[−a,a]|1 and

‖fP,λn
− fT,λn

‖ ≤ 1

λn
‖EPhΦ− EThΦ‖ . (6)

Here, |Lp
γ|[−a,a]|1 denotes the Lipschitz-constant of Lp

γ restricted to [−a, a], a := K/
√
λn and EPhΦ

is the H-valued Bochner-integral of hΦ with respect to P . Now, [22, Thm. 3.3.4] yields

P n
(

T ∈ (X × Y )n : ‖EPhΦ− EThΦ‖ ≥ ελn

2

)

≤ 2 exp
(

− ελ2
nn

64c2n + 8λnεcn

)

, (7)

where cn := pK(γ + K/
√
λn)

p−1. Combining estimates (6) with (7) shows that P n(T : ‖fT,λn
−

fP,λn
‖ ≤ ε/2) → 1 for n → ∞. Therefore, we can replace Eε/2(fP,λn

) by Eε(fT,λn
) in (5). ⊓⊔

Proof of Theorem 2. Using Lemma 5.2 and Lemma 5.3 in [17] we find that
∣

∣R̂p,γ,T (fT,λn
) −

Rp,γ,P (fT,λn
)
∣

∣ → 0 holds in probability under the assumptions of Theorem 2. Now, the assertion
follows by the trivial inequality Rp,γ,P (fT,λn

) ≥ Rp,γ,P . ⊓⊔
Proof of Proposition 1. We first fix an ε > 0 with ε ≤ min{(1+γ)/2−p, p−1/2}. Let us consider
a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n with

p− ε

2
n ≤

∣

∣{(xi, yi) ∈ T : xi = yi = j}
∣

∣ ≤ p+ ε

2
n (8)

for j = ±1. Hoeffding’s inequality ensures that the probability of the occurrence of such a training
set converges exponentially fast to 1. Identifying the RKHS of k with R we have to minimize

λnw
2 + a

(

max{0, 1− w}
)2

+ (1− a)
(

max{0, 1 + w}
)2

(9)

for w ∈ R in order to find the functional constructed by the 2-SMC. Here, a is the fraction of
correctly labeled samples of T . An easy calculation shows that (9) is minimized for

w∗ :=
2a− 1

1 + λ
< 2a− 1 ≤ 2(p+ ε)− 1 ≤ γ .

Note, that (8) yields w∗ > 0. Since w∗ and −w∗ are the margins of the correctly labeled and
incorrectly labeled samples, respectively, the assertion follows. ⊓⊔
Proof of Proposition 2. Let p−0 := p+0 . Given a training set T we denote the fraction of samples
in x ∈ {0, 1} with positive label and negative label by a+x and a−x , respectively. By Hoeffding’s
inequality the probability of |a+x − p+x | ≤ γλn/2 and |a−x − p−x | ≤ γλn/2 tends to 1. Since for large
n, i.e. small λn, the regularized risk

λn〈w,w〉+
1

n

n
∑

i=1

max
{

0, 1− yi〈w, Φ(xi)〉
}

is minimized in (w1, w2) with w1 := (a+0 − a−0 )/(2λ) and w2 := 1 we observe that the margins for
samples xi with xi = 0 are in [−γ/2, γ/2] while the margins are 1 and -1 for correctly labeled
and incorrectly labeled samples xi with xi = 1, respectively. Now, the assertion follows since
p+0 + p−0 + p−1 = RP + 1

2
PX(X \ X̂). ⊓⊔

Proof of Proposition 4. Let T = ((x1, y1), . . . , (xn, yn)) be a training set with

∣

∣{(xi, yi) ∈ T : xi = yi = j}
∣

∣ ≥ 1

4
n(3p− 1) and

∣

∣{(xi, yi) ∈ T : xi = j, yi 6= j}
∣

∣ ≥ 1

4
n(1− p)

for j = ±1. Hoeffding’s inequality ensures that the probability of the occurrence of such a training
set converges to 1. Identifying the RKHS of k with R we write ξi := max{0, 1− yixiw} for w ∈ R.



In order to minimize λnw
2 + 1

n

∑n
i=1 ξ

2
i it suffices to consider w ∈ [−1, 1] in our situation. Then

we obtain

λnw
2 +

1

n

n
∑

i=1

ξ2 ≥ λnw
2 +

1

2
(3p− 1)(1− w)2 +

1

2
(1− p)(1 + w)2

An easy calculation shows that the right hand side is minimal for w = (2p− 1)/(λn + p) and we
obtain

λnw
2 +

1

n

n
∑

i=1

ξ2 ≥ λnp− 3p2 + 4p− 1

λn + p
≥ 4p− 3p2 − 1 > 0 . ⊓⊔

Proof of Proposition 5. For brevity’s sake let us fix sequences (tn) and (an) with tn :=
√√

lnn/n

and an := nh(tn)−
√

n ln(n). Hoeffding’s inequality yields

P n
(

(x1, y1), . . . , (xn, yn)) ∈ (X × Y )n :
∣

∣{i : xi ∈ [0, tn]}
∣

∣ ≥ an

)

≥ 1− 1/n .

Now let us assume that we have a training set T of length n which has at least an samples in [−tn, 0]
and [0, tn], respectively. Considering the optimization problem for the 2-SMC and w ∈ [−1/tn, 1/tn]
we find

λnw
2 +

1

n

n
∑

i=1

(1− yiwxi)
2 ≥ λnw

2 +
1

n

∑

xi∈[−tn,tn]

(1− yiwxi)
2

≥ λnw
2 +

an
n
(1− wtn)

2

≥ λnan
λnn+ ant2n

.

Since for w 6∈ [−1/tn, 1/tn] the regularized risk minimized by the 2-SMC is always larger than for
w ∈ [−1/tn, 1/tn] we thus obtain

F (T, w, λn) ≥ 64.5

8e

(

1 +
1

λnn

) λnan
λnn + ant2n

� 1√
lnn

. ⊓⊔
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