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Abstract

We establish learning rates to the Bayes risk for support vector machines (SVM’s) with hinge
loss. Since a theorem of Devroye states that no learning algorithm can learn with a uniform
rate to the Bayes risk for all probability distributions we have to restrict the class of considered
distributions: in order to obtain fast rates we assume a noise condition recently proposed by
Tsybakov and an approximation condition in terms of the distribution and the reproducing
kernel Hilbert space used by the SVM. For Gaussian RBF kernels with varying widths we propose
a geometric noise assumption on the distribution which ensures the approximation condition.
This geometric assumption is not in terms of smoothness but describes the concentration of the
marginal distribution near the decision boundary. In particular we are able to describe nontrivial
classes of distributions for which SVM’s using a Gaussian kernel can learn with almost linear
rate.

AMS classification: primary 68Q32, secondary 62G20, 62G99, 68T05, 68T10, 41A46, 41A99

1 Introduction

In recent years support vector machines (SVM’s) have been the subject of many theoretical con-
siderations. In particular, it was recently shown ([10], [16], and [11]) that SVM’s can learn for all
data-generating distributions. However, these results are purely asymptotic, i.e. no performance
guarantees can be given in terms of the number n of samples. In this paper we will establish such
guarantees. Since by the no-free-lunch theorem of Devroye (see [4]) performance guarantees are
impossible without assumptions on the data-generating distribution we will restrict our considera-
tions to specific classes of distributions. In particular, we will present a geometric condition which
describes how distributions behave close to the decision boundary. This condition is then used
to establish learning rates for SVM’s. To obtain learning rates faster than n− 1

2 we also employ a
noise condition which was recently introduced by Tsybakov (see [13]). Combining both concepts we
are in particular able to describe distributions such that SVM’s with Gaussian kernel learn almost
linearly, i.e. with rate n−1+ε for all ε > 0, even though the Bayes classifier cannot be represented
by the SVM.

Let us now formally introduce the statistical classification problem. To this end assume that X
is a set. We write Y := {−1, 1}. Given a finite training set T =

(

(x1, y1), . . . , (xn, yn)
)

∈ (X × Y )n

∗Corresponding Author

1



the classification task is to predict the label y of a new sample (x, y). In the standard batch model it
is assumed that T is i.i.d. according to an unknown probability measure P on X×Y . Furthermore,
the new sample (x, y) is drawn from P independently of T . Given a classifier C that assigns to
every training set T a measurable function fT : X → R the prediction of C for y is fT (x). In order
to “learn” from the samples of T the decision function fT should guarantee a small probability
for the misclassification of the example (x, y). Here, misclassification means sign fT (x) 6= y where
we choose a fixed definition of sign(0) ∈ {−1, 1}. To make this precise the risk of a measurable
function f : X → R is defined by

RP (f) := P
(

{(x, y) : sign f(x) 6= y}
)

.

The smallest achievable risk RP := inf
{

RP (f) | f : X → R measurable
}

is called the Bayes risk

of P . A function fP : X → Y attaining this risk is called a Bayes decision function. Obviously, a
good classifier should produce decision functions whose risks are close to the Bayes risk with high
probability. This leads to the definition: a classifier is called universally consistent if

RP (fT ) → RP (1)

in probability for all probability measures P on X × Y . Since R(fT ) is bounded between RP and
1 the convergence in (1) holds if and only if

ET∼P nRP (fT ) −RP → 0 . (2)

The next naturally arising question is whether there are classifiers which guarantee a specific rate
of convergence in (1) or (2) for all distributions. Unfortunately, this is impossible by the so-called
no-free-lunch theorem of Devroye (see [4, Thm. 7.2]). However, if one restricts considerations to
certain smaller classes of distributions such rates exist for various classifiers, e.g.:

• Assuming that the conditional probability η(x) := P (1|x) satisfies certain smoothness as-
sumptions Yang showed in [15] that some plug-in rules achieve rates for (2) which are of the
form n−α for some 0 < α < 1/2 depending on the assumed smoothness. He also showed
that these rates are optimal in the sense that no classifier can obtain faster rates under the
proposed smoothness assumptions.

• It is well know (see [4, Thm. 18.3]) that using structural risk minimization over a sequence
of hypothesis classes with finite VC-dimension every distribution which has a Bayes decision

function in one of the hypothesis classes can be learned with rate
√

log n
n .

• Let P be a noisefree distribution, i.e. RP = 0 and F be a class with finite VC-dimension. If
F contains a Bayes decision function then the rate of convergence of the ERM classifier over
F is n−1.

Restricting the class of distributions for classification always raises the question of whether it is
likely that these restrictions are met in real world problems. Of course, in general this question
cannot be answered. However, experience shows that the assumption that the distribution is noise-
free is almost never satisfied in practice. Furthermore, it is also rather unrealistic to assume that a
Bayes decision function can be represented by the algorithm. Finally, assuming that the conditional
probability is smooth, say k-times continuously differentiable, seems to be unlikely for many real
world classification problems. This discussion shows that the above listed rates are established for
situations which are rarely met in practice.
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Considering the ERM classifier and hypothesis classes F containing a Bayes decision function
there is a large gap in the rates for noise-free and noisy distributions. In [13] Tsybakov proposed a
condition on the noise which describes intermediate situations. In order to present this condition
we write η(x) := P (1|x), x ∈ X for the conditional probability and PX for the marginal distribution
of P on X. With the help of η the noise can be described by the function |2η − 1|. Indeed, in
regions where this function is close to 1 there is only a small amount of noise, whereas function
values close to 0 only occur in regions with a high noise. We will use the following modified version
of Tsybakov’s noise condition which describes the size of the latter regions:

Definition 1.1 Let 0 ≤ q ≤ ∞ and P be a probability measure on X × Y . We say that P has

Tsybakov noise exponent q if there exists a constant C > 0 such that

PX

(

|2η − 1| ≤ t
)

≤ C · tq (3)

for all t > 0.

All distributions have at least noise exponent 0. In the other extreme case q = ∞ the conditional
probability η is bounded away from 1

2 . In particular this means that noise-free distributions have
exponent q = ∞. Furthermore, it suffices to assume that (3) holds for all 0 < t < t0, where
t0 can be arbitrarily small. This shows that the Tsybakov noise exponent only measures the
size of regions with high noise. Finally note, that Tsybakov’s original noise condition assumed

PX(f 6= fP ) ≤ c(RP (f) − RP )
q

1+q for all f : X → Y which is satisfied if e.g. (3) holds (see [13,
Prop. 1]).

In [13] Tsybakov showed that if P has a noise exponent q then ERM-type classifiers can obtain

rates in (2) which are of the form n− q+1
q+pq+2 , where 0 < p < 1 measures the complexity of the

hypothesis class. In particular, rates faster than n− 1
2 are possible whenever q > 0 and p < 1.

Unfortunately, the ERM-classifier he considered is usually hard to implement and in general there
exists no efficient algorithm. Furthermore, his classifier requires substantial knowledge on how to
approximate the Bayes decision rules of the considered distributions. Of course, such knowledge is
rarely present in practice.

In this paper we will use the Tsybakov noise exponent to establish rates for SVM’s which are
very similar to the above rates of Tsybakov. We begin by recalling the definition of SVM’s. To this
end let H be a reproducing kernel Hilbert space (RKHS) of a kernel k : X × X → R (cf. [1], [3]),
i.e. H is a Hilbert space consisting of functions from X to R such that the evaluation functionals
are continuous, and k is symmetric and positive definite. Throughout this paper we assume that X
is a compact metric space and that k is continuous, i.e. H contains only continuous functions. In
order to avoid cumbersome notations we additionally assume ‖k‖∞ ≤ 1. Now given a regularization
parameter λ > 0 the decision function of an SVM is

(fT,λ, bT,λ) := arg min
f∈H
b∈R

λ‖f‖2
H +

1

n

n
∑

i=1

l
(

yi(f(xi) + b)
)

, (4)

where l(t) := max{0, 1 − t} is the so-called hinge loss. Instead of solving (4) directly one usually
solves the quadratic dual problem

maximize
n
∑

i=1
αi − 1

4λ

n
∑

i,j=1
yiyjαiαjk(xi, xj) for α ∈ R

n

subject to
n
∑

i=1
yiαi = 0,

0 ≤ αi ≤ 1
n , i = 1, . . . , n .

(5)
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instead. Then if (α∗
1, . . . , α

∗
n) ∈ R denotes a solution of (5) we have fT,λ = 1

2λ

∑n
i=1 yiα

∗
i k(xi, .) and

bT,λ can be computed using an α∗
i with 0 < α∗

i < 1
n (see [3] for details). Note, that solving (5) has

the remarkable property that H only occurs implicitely via its kernel.
Only a few results on learning rates for SVM’s are known: In [9] it was shown that SVM’s can

learn with linear rate if the distribution is noise-free and the two classes can be strictly separated
by the RKHS. For RKHS which are dense in the space C(X) of continuous functions the latter
condition is satisfied if the two classes have strictly positive ditance in the input space. Of course,
these assumptions are too strong for almost all real-world problems. Furthermore, Wu and Zhou
(see [14]) recently established rates for (1) under the assumption that η is contained in a Sobolev
space. In particular, he proved rates of the form (log n)−p for some p > 0 if the SVM uses a Gaussian
kernel. Of course, these rates are much too slow to be of practical interest and the problems with
smoothness assumptions have already been discussed above.

In order to state our first result which is much stronger than the above mentioned results we
need two concepts both of which deal with the involved RKHS. The first concept describes how well
a given RKHS H can approximate a distribution P . In order to introduce it we define the l-risk of
a function f : X → R by Rl,P (f) := E(x,y)∼P l(yf(x)). The smallest posssible l-risk is denoted by
Rl,P := inf{Rl,P (f) | f : X → R}. Furthermore, we define the approximation error function by

a(λ) := inf
f∈H

(

λ‖f‖2
H + Rl,P (f)

)

−Rl,P , λ ≥ 0 . (6)

The approximation error function quantifies how well an infinite sample SVM with RKHS H
approximates the minimal l-risk. It was shown in [11] that if H is dense in the space of continuous
functions C(X) then for all P we have a(λ) → 0 if λ → 0. However, in non-trivial situations no rate
of convergence which uniformly holds for all distributions P is possible. The following definition
characterizes distributions which guarantee certain polynomial rates:

Definition 1.2 Let H be a RKHS over X and P be a probability measure on X ×Y . We say that
H approximates P with exponent 0 < β ≤ 1 if there exists a constant C > 0 such that

a(λ) ≤ Cλβ

for all λ > 0.

It can be shown (see [7]) that the extremal case β = 1 is equivalent to the fact that the minimal l-
risk can be achieved by an element of H. Because of the specific structure of the approximation error
function values β > 1 are only possible for distributions with η ≡ 1

2 . The latter are uninteresting
for classification considerations.

Finally, we need a complexity measure for RKHS’s. To this end we have to recall some notations.
For a subset A ⊂ E of a Banach space E the covering numbers are defined by

N (A, ε,E) := min
{

n ≥ 1 : ∃x1, . . . , xn ∈ E with A ⊂
n
⋃

i=1

(xi + εBE)
}

ε > 0 ,

where BE denotes the closed unit ball of E. Furthermore, given a training set T =
((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n we denote the space of all equivalence classes of functions
f : X → R with norm

‖f‖L2(T ) :=

(

1

n

n
∑

i=1

∣

∣f(xi)
∣

∣

2

)
1
2

(7)
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by L2(T ). In other words, L2(T ) is a L2-space with respect to the empirical measure of (x1, . . . , xn).
Note, that for a function f : X → R a canonical representative in L2(T ) is the restriction f|{x1,...,xn}.
Now our complexity measure is:

Definition 1.3 Let H be a RKHS over X and BH its closed unit ball. We say that H has

complexity exponent 0 < p ≤ 2 if there exists a constant ap > 0 such that

sup
T∈(X×Y )n

logN (BH , ε, L2(T )) ≤ apε
−p

for all ε > 0.

It was shown in [7] that every RKHS has complexity exponent p = 2 by using the theory
of absolutely 2-summing operators. However, for interesting rates we need complexity exponents
which are strictly smaller than 2. For many RKHS such results are known (see e.g. [11] and [7])
Furthermore, many SVM’s use a parameterized family of RKHS’s. For such SVM’s the constant
ap may play a crucial role. We will see below, that this is in particular true for SVM’s using a
Gaussian RBF kernel.

Now we are in the position to formulate our first rate which applies to SVM’s using general
kernels:

Theorem 1.4 Let H be a RKHS of a continuous kernel on X with complexity exponent 0 < p < 2,
and let P be a probability measure on X×Y with Tsybakov noise exponent 0 < q ≤ ∞. Furthermore,

assume that H approximates P with exponent 0 < β ≤ 1. We define λn := n
−

4(q+1)
(2q+pq+4)(1+β) . Then

for all ε > 0 there is a constant C > 0 such that for all x ≥ 1 and all n ≥ 1 we have

Pr∗
(

T ∈ (X × Y )n : RP (fT,λn
+ bT,λn

) ≤ RP + Cx2n
− 4β(q+1)

(2q+pq+4)(1+β)
+ε
)

≥ 1 − e−x .

Remark 1.5 Using a tail bound of the form of Theorem 1.4 one can easily get convergence rates

for (2). In the case of the above theorem these rates have the form n
−

4β(q+1)
(2q+pq+4)(1+β)

+ε
for all ε > 0.

In other words the rates are exactly the terms in n in the above tail bounds. This is also true for
the rates of SVM’s using Gaussian RBF kernels which are established below.

Remark 1.6 For brevity’s sake our major aim was to show the best possible rates using our
techniques. Therefore, the above theorem states rates for the SVM under the assumption that (λn)
is optimally chosen. However, we emphasize, that the techniques of [7] also give rates if (λn) is
chosen in a different (and thus sub-optimal) way. This is also true for our results on SVM’s using
Gaussian kernels.

Remark 1.7 In [13] it is assumed that a Bayes classifier is contained in the base function classes
the algorithm minimizes over. This assumption corresponds to a perfect approximation of P by H,

i.e. β = 1. In this case our rate is essentially of the form n
− 2(q+1)

2q+pq+4 . If we rescale the complexity
exponent p from (0, 2) to (0, 1) and write p′ for the new complexity exponent this rate becomes

essentially n
− q+1

q+p′q+2 . This is exactly the form of Tsybakov’s result in [13]. However, as far as we
know our complexity measure cannot be compared to Tsybakov’s.

Remark 1.8 By the nature of Theorem 1.4 it suffices to assume that P only satisfies Tsybakov’s
noise assumption for every q′ < q. It also suffices to suppose that H approximates P with exponent
β′ for all β′ < β, and that H has complexity exponent p′ for all p′ > p. It is shown in [7] that the
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RKHS H has an approximation exponent β = 1 if and only if H contains a minimizer of the l-risk.
In particular, if H has approximation exponent β for all β < 1 but not for β = 1 then H does not
contain such a minimizer but Theorem 1.4 gives the same result as for β = 1.

Furthermore, if the RKHS consists of C∞ functions we can choose p arbitrarily close to 0. If
both assumptions are true, we can hence obtain rates up to n−1 even though H does not contain
a minimizer of the l-risk.

In view of Theorem 1.4 and the remarks concerning covering numbers it is often only necessary
to estimate the approximation exponent. In particular this seems to be true for the most popular
kernel, that is the Gaussian RBF kernel kσ(x, x′) = exp(−σ2‖x − x′‖2

2), x, x′ ∈ X on (compact)
subsets X of R

d with width σ. However, to our best knowledge no non-trivial condition on η or
fP = sign ◦(2η − 1) which ensures an approximation exponent β > 0 for fixed width has been
established and [8] shows that Gaussian kernels poorly approximate smooth functions. Hence plug-
in rules based on Gaussian kernels may have a bad performance under smoothness assumptions on
η. In particular, many types of SVM’s using other loss functions are plug-in rules and therefore,
their approximation properties under smoothness assumptions on η may be poor if a Gaussian
kernel is used. However, our SVM’s are not plug-in rules since their decision functions approximate
the Bayes decision function (see [12]). Intuitively, we therefore only need a condition that measures
the cost of approximating the “bump” of the Bayes decision function at the “decision boundary”.
We will now establish such a condition for Gaussian RBF kernels with varying widths σn. To this
end let X−1 := {x ∈ X : η < 1

2} and X1 := {x ∈ X : η > 1
2}. Recall that these two sets are the

classes which have to be learned. Since we are only interested in distributions P having a Tsybakov
exponent q > 0 we always assume that X = X−1 ∪ X1 holds PX -almost surely. Now we define

τx :=











d(x,X1), if x ∈ X−1,

d(x,X−1), if x ∈ X1,

0, otherwise .

(8)

Here, d(x,A) denotes the distance of x to a set A with respect to the Euclidian norm. Roughly
speaking τx measures the distance of x to the “decision boundary”. With the help of this function
we can define the following geometric condition for distributions:

Definition 1.9 Let X ⊂ R
d be compact and P be a probability measure on X × Y . We say that

P has geometric noise exponent α > 0 if there exists a constant C > 0 such that
∫

X

|2η(x) − 1| exp
(

−τ2
x

t

)

PX(dx) ≤ Ct
αd
2 (9)

holds for all t > 0. We say that P has geometric noise exponent α = ∞ if it has geometric noise
exponent α′ for all α′ > 0.

Note, that in the above definition we make neither any kind of smoothness assumption nor do
we assume a condition on PX in terms of absolute continuity with respect to the Lebesgue measure.
Instead, the integral condition (9) describes the concentration of the measure |2η − 1|dPX near the
decision boundary. The less the measure is concentrated in this region the larger the geometric
noise exponent can be chosen. The following examples illustrate this:

Example 1.10 Since exp(−t) ≤ Cαt−α holds for all t > 0 and a constant Cα > 0 only depending
on α > 0 we easily see that (9) is satisfied whenever

(

x 7→ τ−1
x

)

∈ Lαd

(

|2η − 1|dPX

)

. (10)
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Now, recall that τx measures the distance to the class x does not belong to. In particular, we have
(

x 7→ τ−1
x

)

∈ L∞

(

|2η − 1|dPX

)

if and only if the two classes X−1 and X1 have strictly positive
distance! If (10) holds for some 0 < α < ∞ then the two classes may “touch”, i.e. the decision
boundary ∂X−1 ∩ ∂X1 is nonempty. Using this interpretation we easily can construct distributions
which have geometric noise exponent ∞ and touching classes! In general for these distributions
there is no Bayes classifier in the RKHS Hσ of kσ for any σ > 0.

Note, that from (10) it is obvious that the parameter α in (10) describes the concentration of the
measure |2η−1|dPX near the decision boundary. For the distributions described above |2η−1|dPX

must have a very low concentration near the decision boundary.

Example 1.11 We say that η is Hölder about 1
2 with exponent γ > 0 on X ⊂ R

d if there is a
constant cγ such that

|2η(x) − 1| ≤ cγτγ
x , ∀x ∈ X. (11)

If η is Hölder about 1
2 with exponent γ > 0, the graph of 2η(x)−1 lies in a multiple of the envelope

defined by τ γ
x at the top and by −τ γ

x at the bottom. To be Hölder about 1
2 it is sufficient that η is

Hölder continuous, but it is far from being necessary. A function which is Hölder about 1
2 can be

very irregular away from the decision boundary but it cannot jump across the decision boundary
discontinuously. In addition a Hölder continuous function’s exponent must satisfy 0 < γ ≤ 1 where
being Hölder about 1

2 only requires γ > 0.
For distributions with Tsybakov noise exponent such that η is Hölder about 1

2 we can bound the
geometric noise exponent. Indeed, let P be a probability measure on X × Y which has Tsybakov
noise exponent q ≥ 0 and a conditional probability η which is Hölder about 1

2 with exponent γ ≥ 0.

Then (see [7]) if q ≥ 1, P has geometric noise exponent α = γ q+1
d and if 0 ≤ q < 1, P has geometric

noise exponent α for all α < γ q+1
d .

For distributions having a non-trivial geometric noise exponent we can bound the approximation
error function for Gaussian RBF kernels:

Theorem 1.12 Let X be the closed unit ball of the Euclidian space R
d, and Hσ be the RKHS of

the Gaussian RBF kernel kσ on X with width σ > 0. We write aσ(.) for the approximation error

function with respect to Hσ. Then there is a constant cd depending only on d such that if P has

geometric noise exponent 0 < α < ∞ with constant C, for all λ > 0 and all σ > 0 we have

aσ(λ) ≤ cd

(

σdλ + C(4d)
αd
2 σ−αd

)

. (12)

In order to let the right hand side of (12) converge to zero it is necessary to assume both
λ → 0 and σ → ∞. An easy consideration shows that the fastest rate of convergence can be

achieved if σ(λ) := λ
− 1

(α+1)d . In this case we have aσ(λ)(λ) ≤ 2Cλ
α

α+1 . Roughly speaking this states
that the family of spaces Hσ(λ) approximates P with exponent α

α+1 . Note, that we can obtain
approximation rates up to linear order in λ for sufficiently benign distributions. The price for this
good approximation property is, however, an increasing complexity of the hypothesis class BHσ(λ)

for σ → ∞, i.e. λ → 0. The following theorem estimates this in terms of the complexity exponent:

Theorem 1.13 Let Hσ be the RKHS of the Gaussian RBF kernel kσ on X. Then for all 0 < p ≤ 2
and δ > 0, there exists a constant cp,d,δ > 0 such that for all ε > 0 and all σ ≥ 1 we have

sup
T∈Zn

logN (BHσ , ε, L2(T )) ≤ cp,d,δ σ(1− p

2
)(1+δ)dε−p.
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Having established both results for the approximation and complexity exponent we can now
formulate our main result for SVM’s using Gaussian RBF kernels:

Theorem 1.14 Let X be the closed unit ball of the Euclidian space R
d, and P be a distribution

on X ×Y with Tsybakov noise exponent 0 < q ≤ ∞ and geometric noise exponent 0 < α < ∞. We

define

λn :=







n− α+1
2α+1 if α ≤ q+2

2q

n
−

2(α+1)(q+1)
2α(q+2)+3q+4 otherwise ,

and σn := λ
− 1

(α+1)d
n in both cases. Then for all ε > 0 there exists a constant C > 0 such that for all

x ≥ 1 and all n ≥ 1 the SVM using λn and Gaussian RBF kernel with width σn satisfies

Pr∗
(

T ∈ (X × Y )n : RP (fT,λn
) ≤ RP + Cx2n− α

2α+1
+ε
)

≥ 1 − e−x

if α ≤ q+2
2q and

Pr∗
(

T ∈ (X × Y )n : RP (fT,λn
) ≤ RP + Cx2n

− 2α(q+1)
2α(q+2)+3q+4

+ε
)

≥ 1 − e−x

otherwise. If α = ∞ the latter concentration inequality holds if σn = σ is a constant with σ > 2
√

d.

Most of the remarks made after Theorem 1.4 also apply to the above theorem up to obvious
modifications. In particular this is true for Remark 1.5, Remark 1.6, and Remark 1.8.

2 Idea of the proofs

In this section we provide a brief overview of the ideas which are used to prove our rates. The full
proofs can be found in [7]. The basic idea of the proofs consists of an inequality between excess
classification and excess l-risk, and a modification of the classical decomposition into estimation
and approximation error. More precisely we have

RP (fT,λ + bT,λ) −RP ≤ 2
(

Rl,P (fT,λ + bT,λ) −Rl,P

)

= 2
(

Rl,P (fT,λ + bT,λ) −Rl,P (fP,λ + bP,λ) + Rl,P (fP,λ + bP,λ) −Rl,P

)

≤ 2
(

λ‖fT,λ‖2 + Rl,P (fT,λ + bT,λ) − λ‖fP,λ‖2 −Rl,P (fP,λ + bP,λ) + a(λ)
)

,

where the first inequality is due to Zhang (see [16] and also [2]) and (fP,λ, bP,λ) minimizes the
infinite-sample SVM problem, i.e. (fP,λ, bP,λ) = arg minf∈H,b∈R λ‖f‖2 + Rl,P (f + b). Therefore,
we can split the anaylsis into an estimation error part which deals with

λ‖fT,λ‖2 + Rl,P (fT,λ + bT,λ) − λ‖fP,λ‖2 −Rl,P (fP,λ + bP,λ) (13)

and an approximation error part which deals with the approximation error function λ 7→ a(λ).
Let us first treat the estimation error part. To this end we write L ◦ (f, b)(x, y) := λ‖f‖2 +

l(y(f(x) + b)) and RL,P (f, b) := EP L ◦ (f, b) = λ‖f‖2 + Rl,P (f + b). Furthermore, for 0 < λ ≤ 1
we define

G :=
{

L ◦ (f, b) − L ◦ (fP,λ, bP,λ) : (f, b) ∈ γBH × (γ + 1)BR

}

,
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where 1 ≤ γ ≤ λ− 1
2 is a constant we discuss later and BH , BR denote the closed unit balls in H

and R. Furthermore, for n ≥ 1 and ε > 0 we define the local Rademacher average of G by

RadP (G, n, ε) := EP nEµ sup
g∈G,

EP g2≤ε

∣

∣

∣

∣

∣

1

n

n
∑

i=1

εig(zi)

∣

∣

∣

∣

∣

,

where (εi) is a sequence of i.i.d. Rademacher variables (that is, symmetric {−1, 1}-valued random
variables) with respect to some probability measure µ on a set Ω. With this notations the following
theorem from [7] which is a consequence of Talagrand’s concentration inequality holds:

Theorem 2.1 Let P be a probability measure on X × Y and 0 < λ ≤ 1. Suppose that there are

constants c ≥ 0, 0 < α ≤ 1 and δ ≥ 0 with EP g2 ≤ c (EP g)α + δ for all g ∈ G. Let B := 2γ + 3,
n ≥ 1, x > 0 and ε > 0 with

ε ≥ 10max

{

2RadP (G, n, cεα + δ),

√

δx

n
,

(

4cx

n

)
1

2−α

,
Bx

n

}

.

Then we have

Pr∗
(

T ∈ Zn : RL,P (fT,λ, bT,λ) < RL,P (fP,λ, bP,λ) + ε
)

≥ 1 − e−x .

Theorem 2.1 has been proved in [2] for δ = 0. In this case its main advantage compared to the

“standard analysis” using uniform deviation bounds is that it can produce rates faster than n− 1
2

for risk deviations. For a further discussion of this issue we refer to [2]. If δ > 0 the above theorem

apparently cannot produce rates faster than n− 1
2 . However, in order to decrease the approximation

error function we have to choose λn → 0 and thus the class G = Gn increases with n. If for such

sequences (Gn) we can show that δn → 0 then the term
√

δx
n no longer prohibits rates faster than

n− 1
2 . As we will see below this phenomenon actually occurs for distributions satisfying Tsybakov’s

noise assumption for some exponent q > 0.
The above theorem bounds the estimation error part (13) by ε. Hence, in order to obtain rates

we have to estimate ε, i.e. we have to provide a bound on the local Rademacher average, constants
for the so-called variance bound EP g2 ≤ c (EP g)α + δ, and finally, a bound for B. Let us begin with
the local Rademacher average which can be treated by the following proposition

Proposition 2.2 Let H be a RKHS on X with complexity exponent 0 < p < 2 and corresponding

constant a. Then there exists a constant cp > 0 such that for all n ≥ 1 and all ε > 0 we have

Rad(G, n, ε) ≤ cp max

{

B
p

2 ε
1
2
− p

4

(a

n

)
1
2
, B
(a

n

)
2

2+p

}

.

Besides some technical details the proof of this proposition heavily relies on techniques of
Mendelson (see [6]). Again we refer to [7]. Using Proposition 2.2 one can give upper bounds
on the error ε in Theorem 2.1 in terms of the arising constants. More precisely, we obtain that
besides a constant only depending on p and H we can choose

ε := B
2p

4−2α+αp c
2−p

4−2α+αp

(a

n

)
2

4−2α+αp
+ B

p

2 δ
2−p

4

(a

n

)
1
2

+ B
(a

n

)
2

2+p

√

δx

n
+
(cx

n

)
1

2−α
+

Bx

n
.

Let us now deal with the variance bound. It turns out that Tsybakov’s noise exponent influences
the corresponding constants c, α and δ in Theorem 2.1. Surprisingly, however, the approximation
error function also influences δ. More precisely, we have the following result:
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Proposition 2.3 Let P be a distribution on X × Y with Tsybakov noise exponent 0 < q ≤ ∞.

Then there exists a constant C > 0 such that for all 0 < λ ≤ 1, 0 < γ ≤ λ−1/2 and all g ∈ G we

have

Eg2 ≤ CB
q+2
q+1
(

Eg
)

q

q+1 + CB
q+2
q+1 a

q

q+1 (λ) ,

in other words we have α = q
q+1 , c = CB

q+2
q+1 , and δ = CB

q+2
q+1 a

q

q+1 (λ).

In view of Theorem 2.1 it hence remains to bound B, i.e. the constant γ. Since we always have

λ‖fT,λ‖2 ≤ λ‖fT,λ‖2 + Rl,P (fT,λ + bT,λ) ≤ Rl,P (0) = 1 ,

an obvious choice would be γ = λ− 1
2 . However, considering the infinite-sample solution we observe

λ‖fP,λ‖2 ≤ λ‖fP,λ‖2 + Rl,P (fP,λ + bP,λ) ≤ a(λ)

which is a significantly better behaviour if (H,P ) has some approximation exponent β > 0. There-
fore, it is highly desirable to approximately establish this relation for the empirical solutions, too.
Fortunately, it is indeed possible to prove this relation in a certain sense. To this end we first apply
Theorem 2.1 for γ = λ− 1

2 . This gives us

λ‖fT,λ‖2 ≤ λ‖fT,λ‖2 + Rl,P (fT,λ + bT,λ) ≤ λ‖fP,λ‖2 + Rl,P (fP,λ + bP,λ) + ε ≤ a(λ) + ε

with probability not less than 1 − e−x. Now for sequences (λn) say as in Theorem 1.4 we observe
that ε = εn dominates a(λn) and therefore we cannot immediately establish the desired estimate.
Nonetheless, we have εn → 0 polynomially and the corresponding exponent can be directly con-
trolled. The basic idea is now to use the estimate on γn = γ which is implied by λ‖fT,λn

‖2 ≤ 2εn for
large n in order to again apply Theorem 2.1. In turns out that the arising sequence (ε̂n) converges
faster than (εn) and hence our estimate on γn is improved for large n. Iterating this procedure
then finally gives the desired estimate. For details we again refer to [7].

Now let us turn to the approximation error part. To prove Theorem 1.12 we bound the approx-
imation error function (6) by a judicious choice of function f̂ ∈ H in the inequality

a(λ) ≤ λ‖f‖2
H + Rl,P (f) −Rl,P , f ∈ H. (14)

To that end, let η(x) = P (y = 1|x) be any regular conditional distribution for P and let fP be any
Bayes function with values in [−1, 1] such that fP = 1 on X1 and fP = −1 on X−1. We will choose
a function f̂ by smoothing an extension f́P of fP to X́ := 3X. To do so first consider the extension
of η to be constant in the outward radial direction ή(x) = η(x), |x| ≤ 1 and ή(x) = η( x

|x|), |x| > 1

and define X́−1 := {x ∈ X́ : ή(x) < 1
2}, X́1 := {x ∈ X́ : ή(x) > 1

2}. It is easy to show that when

x ∈ X1, we have B(x, τx) ⊂ X́1 and when x ∈ X−1, we have B(x, τx) ⊂ X́−1 where B(x, τ) denotes
the open ball of radius τ about x. Let f́P be a measurable function with values in [−1, 1] which
coincides with fP on X such that f́P = 1 on X́1, f́P = −1 on X́−1, and f́P (x) = 0, |x| > 3.
Let Kσ denote the integral operator associated with the Gaussian RBF kernel kσ . Also consider

the normalized Gaussian kernel k̂σ = σdπ− d
2 kσ and the corresponding Gauss-Weierstrass integral

operator K̂σ. We consider the function f̂ = K̂σ f́P . We recall that the RKHS associated with kσ on

X́ is Hσ(X́) = K
1
2
σ L2(X́) and the norm is defined by ‖K

1
2
σ g‖Hσ(X́) = ‖g‖L2(X́). Therefore

‖f̂‖Hσ(X́) = ‖K̂σ f́P‖Hσ(X́) = σ
d
2 π− d

4 ‖K
1
2
σ K̂

1
2
σ g‖Hσ(X́) = σ

d
2 π− d

4 ‖K̂
1
2
σ g‖L2(X́) ≤ σ

d
2 π− d

4 ‖K̂
1
2
σ ‖‖g‖L2(X́) .
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The continuous functional calculus theorem for self adjoint operators implies that ‖K̂
1
2
σ ‖ = ‖K̂σ‖

1
2 .

Therefore to finish the proof we only need to show that K̂σ is a contraction on L2(X́). The latter
follows from Young’s inequality since the Gauss-Weierstrass integral operator K̂σ is a convolution

and
∫

σdπ− d
2 e−σ2 |u|2du = 1. We therefore obtain ‖f̂‖Hσ(X́) ≤ σ

d
2 (81

π )
d
4 θ(d) where θ(d) = 2π

d
2

dΓ( d
2
)

is

the volume of X. According to Aronszajn [1] we also have ‖f‖Hσ(X) ≤ ‖f‖Hσ(X́) and so we have

bounded the first term in the inequality (14) with the choice f̂ and proved the first term in the
inequality of Theorem 1.12.

We now proceed to bound the term Rl,P (f̂) − Rl,P in (14). For any function which satisfies
−1 ≤ f ≤ 1, Zhang [16] shows that

Rl,P (f) −Rl,P = EPX
(|2η − 1||f − fP |).

It is well known for the Gauss-Weierstrass heat operator K̂σ that since −1 ≤ f́P ≤ 1 it follows that
−1 ≤ f̂ = K̂σ f́P ≤ 1 and so we obtain

Rl,P (f̂) −Rl,P = Rl,P (K̂σ f́P ) −Rl,P = EPX
(|2η − 1||K̂σ f́P − fP |).

Now for x ∈ X we have

f̂(x) =

∫

X́
k̂σ(x, x́)f́P (x́)dx́ =

∫

Rd

k̂σ(x, x́)f́P (x́)dx́

=

∫

Rd

k̂σ(x, x́)(f́P (x́) + 1)dx́ − 1

≥
∫

B(x,τx)
k̂σ(x, x́)(f́P (x́) + 1)dx́ − 1.

When x ∈ X1, we have observed that B(x, τx) ⊂ X́1 so that f́P (x́) = 1 for all x́ ∈ B(x, τx) and so
obtain

f̂(x) ≥ 2

∫

B(x,τx)
k̂σ(x, x́)dx́ − 1 = 2Pγσ (|u| < τx) − 1 = 1 − 2Pγσ (|u| ≥ τx) ,

where γσ = σd(π)−
d
2 e−σ2|u|2du is a spherical Gaussian in R

d. According to the tail bound inequality
[5, Inequality 3.5, p. 59] for spherical Gaussians we have

Pγσ(|u| ≥ r) ≤ 4e−σ2r2/4d .

Consequently, for x ∈ X1 we obtain

1 ≥ f̂(x) ≥ 1 − 8e−σ2τ2
x/4d.

For x ∈ X−1 we analogously obtain that

−1 ≤ f̂(x) ≤ −1 + 8e−σ2τ2
x/4d

so that on X1 ∪ X−1 we have

|K̂σ f́P (x) − fP (x)| ≤ 8e−σ2τ2
x/4d.

Since Rl,P (f̂)−Rl,P = EPX
(|2η−1||K̂σ f́P −fP |), combining this with the geometric noise assump-

tion of Theorem 1.12 completes the proof of that theorem.
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